4.6 Article

Hydrothermal Alteration Revealed by Apatite Luminescence and Chemistry: A Potential Indicator Mineral for Exploring Covered Porphyry Copper Deposits

期刊

ECONOMIC GEOLOGY
卷 111, 期 6, 页码 1397-1410

出版社

SOC ECONOMIC GEOLOGISTS, INC
DOI: 10.2113/econgeo.111.6.1397

关键词

-

资金

  1. Geoscience BC [367]

向作者/读者索取更多资源

Apatite is a common resistate mineral occurring in a range of host rocks and ore-related hydrothermal alteration assemblages. Apatite in several porphyry copper deposits in British Columbia has a unique set of physical and compositional characteristics that can be used to evaluate the chemical conditions of magmas that formed the causative intrusions or associated hydrothermal alteration. Apatite under visible light and SEM shows no notable variations between unaltered and altered varieties but cathodoluminescence reveals significant differences. Apatite in unaltered rocks displays yellow, yellow-brown, and brown luminescence, whereas in K silicate-altered rocks apatite displays a characteristic green luminescence. The green-luminescent apatite replaces yellow-or brown-luminescent apatite and locally overgrows it. Apatite occurring with muscovite (i.e., phyllic)-altered rocks displays characteristic gray luminescence. The chemistry of apatite, as determined by electron microprobe and laser ICP-MS analyses, directly reflects its alteration and luminescence. The unaltered yellow-luminescent apatite has high concentrations of Mn (0.3-0.5 wt % MnO) and a high Mn/Fe ratio (>1), whereas the brown-luminescent apatite has low Mn, but higher concentrations of S and REE + Y. The green K silicate alteration-related luminescence is caused by lower Mn/Fe ratios (ca. 1) along with depletions of other trace elements such as Cl, S, and Na. Gray-luminescent apatite occurring with muscovite-altered rocks results from significant Mn loss (<0.15% MnO) contemporaneous with depletion in Na, S, Cl, and REE during low pH phyllic alteration in calc-alkalic porphyry deposits. The correlation between apatite texture, luminescence, and chemical composition with the type and intensity of porphyry alteration offers a potentially fast and effective method to utilize it as an indicator for porphyry mineralization in a range of exploration materials including soils, regoliths, and heavy mineral concentrates from glacial and fluvial materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据