4.6 Article

Recycling Untreated Coal Bottom Ash with Added Value for Mitigating Alkali-Silica Reaction in Concrete: A Sustainable Approach

期刊

SUSTAINABILITY
卷 12, 期 24, 页码 -

出版社

MDPI
DOI: 10.3390/su122410631

关键词

coal; bottom ash; reactive aggregate; concrete; durability; alkali– silica reaction; expansion; toxicity; sustainable infrastructure

资金

  1. Higher Education Commission (HEC) of Pakistan through the National Research Program for Universities (NRPU) 9820 grant Mitigation of Alkali-Silica Reaction UsingWaste Materials: A Sustainable Approach

向作者/读者索取更多资源

Each year, about 730 million tons of bottom ash is generated in coal fired power plants worldwide. This by-product can be used as partial replacement for Portland cement, favoring resource conservation and sustainability. Substantial research has explored treated and processed coal bottom ash (CBA) for possible use in the construction industry. The present research explores using local untreated and raw CBA in mitigating the alkali-silica reaction (ASR) of reactive aggregates in concrete. Mortar bar specimens incorporating various proportions of untreated CBA were tested in accordance with ASTM C1260 up to 150 days. Strength activity index (SAI) and thermal analysis were used to assess the pozzolanic activity of CBA. Specimens incorporating 20% CBA achieved SAI greater than 75%, indicating pozzolanic activity. Mixtures incorporating CBA had decreased ASR expansion. Incorporating 20% CBA in mixtures yielded 28-day ASR expansion of less than the ASTM C1260 limit value of 0.20%. Scanning electron microscopy depicted ASR induced microcracks in control specimens, while specimens incorporating CBA exhibited no microcracking. Moreover, low calcium-to-silica ratio and reduced alkali content were observed in specimens incorporating CBA owing to alkali dilution and absorption, consequently decreasing ASR expansion. The toxicity characteristics of CBA indicated the presence of heavy metals below the US-EPA limits. Therefore, using local untreated CBA in concrete as partial replacement for Portland cement can be a non-hazardous alternative for reducing the environmental overburden of cement production and CBA disposal, with the added benefit of mitigating ASR expansion and its associated costly damage, leading to sustainable infrastructure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据