4.5 Review

An overview of heat stress in tomato ( Solanum lycopersicum L.)

期刊

SAUDI JOURNAL OF BIOLOGICAL SCIENCES
卷 28, 期 3, 页码 1654-1663

出版社

ELSEVIER
DOI: 10.1016/j.sjbs.2020.11.088

关键词

Tomato; Heat stress; High temperature; Stress response; Heat shock proteins; Tolerance mechanism

类别

向作者/读者索取更多资源

Heat stress has a permanent impact on plant growth and development by causing a rise in temperature above a threshold level. Night temperature plays a significant role in this, affecting the heat reaction of plants. Breeding objectives have evolved over the decades to focus on higher yield, disease resistance, shelf-life, and quality of tomatoes. Researchers use various parameters to assess heat stress tolerance in tomatoes, including floral characteristics and fruit yield per plant.
Heat stress has been defined as the rise of temperature for a period of time higher than a threshold level, thereby permanently affecting the plant growth and development. Day or night temperature is considered as the major limiting factor for plant growth. Earlier studies reported that night temperature is an important factor in the heat reaction of the plants. Tomato cultivars capable of setting viable fruits under night temperatures above 21 degrees C are considered as heat-tolerant cultivars. The development of breeding objectives is generally summarized in four points: (a) cultivars with higher yield, (b) disease resistant varieties in the 1970s, (c) long shelf-life in 1980s, and (d) nutritive and taste quality during 1990s. Some unique varieties like the dwarf Micro-Tom, and the first transgenic tomato (FlavrSavr) were developed through breeding; they were distributed late in the 1980s. High temperature significantly affects seed, pollen viability and root expansion. Researchers have employed different parameters to evaluate the tolerance to heat stress, including membrane thermo stability, floral characteristics (Stigma exertion and antheridia cone splitting), flower number, and fruit yield per plant. Reports on pollen viability and fruit set/plant under heat stress by comparing the pollen growth and tube development in heat-treated and non-heat-stressed conditions are available in literature. The electrical conductivity (EC) have been used to evaluate the tolerance of some tomato cultivars in vitro under heat stress conditions as an indication of cell damage due to electrolyte leakage; they classified the cultivars into three groups: (a) heat tolerant, (b) moderately heat tolerant, and (c) heat sensitive. It is important to determine the range in genetic diversity for heat tolerance in tomatoes. Heat stress experiments under field conditions offer breeders information to identify the potentially heat tolerant germplasm. (c) 2020 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据