4.4 Article

Phase transitions in TGFT: functional renormalization group in the cyclic-melonic potential approximation and equivalence to O(N) models

期刊

JOURNAL OF HIGH ENERGY PHYSICS
卷 -, 期 12, 页码 -

出版社

SPRINGER
DOI: 10.1007/JHEP12(2020)159

关键词

Renormalization Group; Global Symmetries; Nonperturbative Effects; Models of Quantum Gravity

资金

  1. PRIME programme of the German Academic Exchange Service (DAAD)
  2. German Federal Ministry of Education and Research (BMBF)
  3. Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) [418838388, 2044-390685587]

向作者/读者索取更多资源

In the group field theory approach to quantum gravity, continuous spacetime geometry is expected to emerge via phase transition. However, understanding the phase diagram and finding fixed points under the renormalization group flow remains a major challenge. In this work we tackle the issue for a tensorial group field theory using the functional renormalization group method. We derive the flow equation for the effective potential at any order restricting to a subclass of tensorial interactions called cyclic melonic and projecting to a constant field in group space. For a tensor field of rank r on U(1) we explicitly calculate beta functions and find equivalence with those of O(N) models but with an effective dimension flowing from r - 1 to zero. In the r - 1 dimensional regime, the equivalence to O(N) models is modified by a tensor specific flow of the anomalous dimension with the consequence that the Wilson-Fisher type fixed point solution has two branches. However, due to the flow to dimension zero, fixed points describing a transition between a broken and unbroken phase do not persist and we find universal symmetry restoration. To overcome this limitation, it is necessary to go beyond compact configuration space.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据