4.4 Article

Quantum simulation of quantum field theories as quantum chemistry

期刊

JOURNAL OF HIGH ENERGY PHYSICS
卷 -, 期 12, 页码 -

出版社

SPRINGER
DOI: 10.1007/JHEP12(2020)011

关键词

Conformal Field Theory; Field Theories in Lower Dimensions; Lattice Quantum Field Theory

资金

  1. Institute for Quantum Information and Matter (IQIM), an NSF Physics Frontiers Center [PHY-1125565]
  2. Gordon and Betty Moore Foundation [GBMF-2644]
  3. Sandia Quantum Optimization & Learning & Simulation, DOE [DE-NA0003525]
  4. Walter Burke Institute for Theoretical Physics

向作者/读者索取更多资源

Conformal truncation is a powerful numerical method for solving generic strongly-coupled quantum field theories based on purely field-theoretic technics without introducing lattice regularization. We discuss possible speedups for performing those computations using quantum devices, with the help of near-term and future quantum algorithms. We show that this construction is very similar to quantum simulation problems appearing in quantum chemistry (which are widely investigated in quantum information science), and the renormalization group theory provides a field theory interpretation of conformal truncation simulation. Taking two-dimensional Quantum Chromodynamics (QCD) as an example, we give various explicit calculations of variational and digital quantum simulations in the level of theories, classical trials, or quantum simulators from IBM, including adiabatic state preparation, variational quantum eigensolver, imaginary time evolution, and quantum Lanczos algorithm. Our work shows that quantum computation could not only help us understand fundamental physics in the lattice approximation, but also simulate quantum field theory methods directly, which are widely used in particle and nuclear physics, sharpening the statement of the quantum Church-Turing Thesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据