4.4 Article

IBP reduction coefficients made simple

期刊

JOURNAL OF HIGH ENERGY PHYSICS
卷 -, 期 12, 页码 -

出版社

SPRINGER
DOI: 10.1007/JHEP12(2020)054

关键词

Scattering Amplitudes; Differential and Algebraic Geometry

资金

  1. Project II.5 of SFB-TRR 195 Symbolic Tools in Mathematics and their Applicationof the German Research Foundation (DFG)
  2. NSF of China [11947301]

向作者/读者索取更多资源

We present an efficient method to shorten the analytic integration-by-parts (IBP) reduction coefficients of multi-loop Feynman integrals. For our approach, we develop an improved version of Leinartas' multivariate partial fraction algorithm, and provide a modern implementation based on the computer algebra system Singular. Furthermore, we observe that for an integral basis with uniform transcendental (UT) weights, the denominators of IBP reduction coefficients with respect to the UT basis are either symbol letters or polynomials purely in the spacetime dimension D. With a UT basis, the partial fraction algorithm is more efficient both with respect to its performance and the size reduction. We show that in complicated examples with existence of a UT basis, the IBP reduction coefficients size can be reduced by a factor of as large as similar to 100. We observe that our algorithm also works well for settings without a UT basis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据