4.7 Article

The ThSOS3 Gene Improves the Salt Tolerance of Transgenic Tamarix hispida and Arabidopsis thaliana

期刊

FRONTIERS IN PLANT SCIENCE
卷 11, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fpls.2020.597480

关键词

ROS-scavenging capability; salt stress; Tamarix hispida; Arabidopsis thaliana; ThSOS

资金

  1. Province in Heilongjiang Outstanding Youth Science Fund [JC2017004]
  2. National Natural Science Foundation of China [31670679]
  3. Overseas Expertise Introduction Project for Discipline Innovation [B16010]
  4. Heilongjiang Touyan Innovation Team Program (Tree Genetics and Breeding Innovation Team)

向作者/读者索取更多资源

The study revealed that overexpression of ThSOS3 enhances antioxidant enzyme activity, improves ROS scavenging capability, and reduces lipid peroxidation in cell membranes, resulting in better growth and response of plants under salt stress. This provides a foundation for further understanding the role of ThSOS in salt tolerance mechanisms in Tamarix hispida.
The salt overly sensitive (SOS) signal transduction pathway is one of the most highly studied salt tolerance pathways in plants. However, the molecular mechanism of the salt stress response in Tamarix hispida has remained largely unclear. In this study, five SOS genes (ThSOS1-ThSOS5) from T. hispida were cloned and characterized. The expression levels of most ThSOS genes significantly changed after NaCl, PEG(6000), and abscisic acid (ABA) treatment in at least one organ. Notably, the expression of ThSOS3 was significantly downregulated after 6 h under salt stress. To further analyze ThSOS3 function, ThSOS3 overexpression and RNAi-mediated silencing were performed using a transient transformation system. Compared with controls, ThSOS3-overexpressing transgenic T. hispida plants exhibited greater reactive oxygen species (ROS)-scavenging capability and antioxidant enzyme activity, lower malondialdehyde (MDA) and H2O2 levels, and lower electrolyte leakage rates under salt stress. Similar results were obtained for physiological parameters in transgenic Arabidopsis, including H2O2 and MDA accumulation, superoxide dismutase (SOD) and peroxidase (POD) activity, and electrolyte leakage. In addition, transgenic Arabidopsis plants overexpressing ThSOS3 displayed increased root growth and fresh weight gain under salt stress. Together, these data suggest that overexpression of ThSOS3 confers salt stress tolerance on plants by enhancing antioxidant enzyme activity, improving ROS-scavenging capability, and decreasing the MDA content and lipid peroxidation of cell membranes. These results suggest that ThSOS3 might play an important physiological role in salt tolerance in transgenic T. hispida plants. This study provides a foundation for further elucidation of salt tolerance mechanisms involving ThSOSs in T. hispida.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据