4.6 Article

Detection of ESBL/AmpC-Producing and Fosfomycin-Resistant Escherichia coli From Different Sources in Poultry Production in Southern Brazil

期刊

FRONTIERS IN MICROBIOLOGY
卷 11, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fmicb.2020.604544

关键词

Avian; multidrug resistance (MDR); Enterobacteriaceae; fosfomycin; poultry litter; public health

资金

  1. Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior - Brazil (CAPES) [001]
  2. National Council for Scientific and Technological Development [433656/2018-2]
  3. Bill and Melinda Gates Foundation's Grand Challenges Explorations Brazil - New Approaches to Characterize the Global Burden of Antimicrobial Resistance [OPP1193112]

向作者/读者索取更多资源

This study investigated the presence of ESBL-producing and fosfomycin-resistant Escherichia coli in poultry farms in southern Brazil. The findings indicate that poultry litter and beetles are critical points during poultry production and the presence of fosfomycin-resistant strains suggest risks associated with antimicrobial use. Additionally, genetic determinants encoding CTX-M and fosA3 enzymes can be transmitted to E. coli strains from broiler chicken microbiota, posing a risk to public health.
This study discussed the use of antimicrobials in the commercial chicken production system and the possible factors influencing the presence of Extended-spectrum beta-lactamase (ESBL)/AmpC producers strains in the broiler production chain. The aim of this study was to perform longitudinal monitoring of ESBL-producing and fosfomycin-resistant Escherichia coli from poultry farms in southern Brazil (Parana and Rio Grande do Sul states) and determine the possible critical points that may be reservoirs for these strains. Samples of poultry litter, cloacal swabs, poultry feed, water, and beetles (Alphitobius sp.) were collected during three distinct samplings. Phenotypic and genotypic tests were performed for characterization of antimicrobial resistant strains. A total of 117 strains were isolated and 78 (66%) were positive for ESBL production. The poultry litter presented ESBL positive strains in all three sampled periods, whereas the cloacal swab presented positive strains only from the second period. The poultry litter represents a significant risk factor mainly at the beginning poultry production (odds ratio 6.43, 95% confidence interval 1-41.21, p < 0.05). All beetles presented ESBL positive strains. The predominant gene was bla(CTX-M) group 2, which occurred in approximately 55% of the ESBL-producing E. coli. The cit gene was found in approximately 13% of the ESBL-producing E. coli as AmpC type determinants. A total of 19 out of 26 fosfomycin-resistant strains showed the fosA3 gene, all of which produced ESBL. The correlation between fosA3 and bla(CTX-M) group 1 (bla(CTX-M55)) genes was significant among ESBL-producing E. coli isolated from Parana (OR 3.66, 95% CI 1.9-9.68) and these genetic determinants can be transmitted by conjugation to broiler chicken microbiota strains. Our data revealed that poultry litter and beetles were critical points during poultry production and the presence of fosfomycin-resistant strains indicate the possibility of risks associated with the use of this antimicrobial during production. Furthermore, the genetic determinants encoding CTX-M and fosA3 enzymes can be transferred to E. coli strains from broiler chicken microbiota, thereby creating a risk to public health.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据