4.6 Article

Unravelling the Role of Rumen Microbial Communities, Genes, and Activities on Milk Fatty Acid Profile Using a Combination of Omics Approaches

期刊

FRONTIERS IN MICROBIOLOGY
卷 11, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fmicb.2020.590441

关键词

rumen microbiome; microbial genes; cow; milk fatty acids; metagenomics; metabolomics; rumen stress

资金

  1. Research Excellence Grant Contingency fund 2017-2018
  2. University of Reading
  3. Biotechnology and Biological Sciences Research Council (BBSRC) [BB/N016742/1, BB/S006680/1, BB/N01720X/1, BB/R015023/1, BBSRC: BB/P013759/1, BB/P013732/1, BB/J004235/1, BB/J004243/1]
  4. Scottish Government (RESAS)
  5. Scotland's Rural College, the University of Reading
  6. Roslin Institute-University of Edinburgh
  7. BBSRC [BB/S006567/1, BB/N01720X/1, BB/N016742/1, BB/R015023/1, BB/S006680/1] Funding Source: UKRI

向作者/读者索取更多资源

Comparing rumen microbiome in cows producing milk with different fatty acid profiles revealed that cows with higher SFA content in milk had increased abundances of lactic acid bacteria and acetogenic Proteobacteria in their rumen. Microbial genes correlated with milk fatty acids were found to influence rumen metabolite concentrations, explaining a significant portion of the variation in milk fatty acid profiles. Metagenomics and metabolomics analyses highlighted differences in rumen metabolic activities among cows with contrasting FA profiles, indicating adaptations to factors like reduced rumen pH and carbohydrate fermentation.
Milk products are an important component of human diets, with beneficial effects for human health, but also one of the major sources of nutritionally undesirable saturated fatty acids (SFA). Recent discoveries showing the importance of the rumen microbiome on dairy cattle health, metabolism and performance highlight that milk composition, and potentially milk SFA content, may also be associated with microorganisms, their genes and their activities. Understanding these mechanisms can be used for the development of cost-effective strategies for the production of milk with less SFA. This work aimed to compare the rumen microbiome between cows producing milk with contrasting FA profile and identify potentially responsible metabolic-related microbial mechanisms. Forty eight Holstein dairy cows were fed the same total mixed ration under the same housing conditions. Milk and rumen fluid samples were collected from all cows for the analysis of fatty acid profiles (by gas chromatography), the abundances of rumen microbiome communities and genes (by whole-genome-shotgun metagenomics), and rumen metabolome (using 500 MHz nuclear magnetic resonance). The following groups: (i) 24 High-SFA (66.9-74.4% total FA) vs. 24 Low-SFA (60.2-66.6%% total FA) cows, and (ii) 8 extreme High-SFA (69.9-74.4% total FA) vs. 8 extreme Low-SFA (60.2-64.0% total FA) were compared. Rumen of cows producing milk with more SFA were characterized by higher abundances of the lactic acid bacteria Lactobacillus, Leuconostoc, and Weissella, the acetogenic Proteobacteria Acetobacter and Kozakia, Mycobacterium, two fungi (Cutaneotrichosporon and Cyphellophora), and at a lesser extent Methanobrevibacter and the protist Nannochloropsis. Cows carrying genes correlated with milk FA also had higher concentrations of butyrate, propionate and tyrosine and lower concentrations of xanthine and hypoxanthine in the rumen. Abundances of rumen microbial genes were able to explain between 76 and 94% on the variation of the most abundant milk FA. Metagenomics and metabolomics analyses highlighted that cows producing milk with contrasting FA profile under the same diet, also differ in their rumen metabolic activities in relation to adaptation to reduced rumen pH, carbohydrate fermentation, and protein synthesis and metabolism.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据