4.2 Article

Reconstruction of net force fluctuations from surface EMGs of multiple muscles in steady isometric plantarflexion

期刊

EXPERIMENTAL BRAIN RESEARCH
卷 239, 期 2, 页码 601-612

出版社

SPRINGER
DOI: 10.1007/s00221-020-05987-5

关键词

Steadiness; Multiple muscle model; Interference electromyogram; Cross-correlation function

资金

  1. [19H04018]

向作者/读者索取更多资源

This study revealed a temporal correlation between force fluctuations and low-frequency component of rectified surface EMG during steady multi-muscle contractions, suggesting a potential applicability of individual surface EMGs for identifying the contributing muscles to controlling isometric steady force in multi-muscle contractions.
The purposes of this study were to clarify if force fluctuations during steady multi-muscle contractions have a temporal correlation with a low-frequency component of rectified surface EMG (rEMG) in the involved muscles and collection of that component across muscles allows for the reconstruction of force fluctuations across a wide range of contraction intensities. Healthy young men (n = 15) exerted steady isometric plantarflexion force at 5-60% of maximal force. Surface EMG was recorded from the medial and lateral gastrocnemii, soleus, peroneus longus, abductor hallucis, and tibialis anterior muscles. The cross-correlation function (CCF) between plantarflexion force fluctuations and low-pass filtered rEMG in each muscle was calculated for 8 s. To reconstruct force fluctuations from rEMGs, the product of rEMG and an identified constant factor were summed across muscles with time-lag compensation for electro-mechanical delay. A distinct peak of the CCF was found between plantarflexion force fluctuations and rEMG in most cases except for the tibialis anterior. The CCF peak was greatest in the medial gastrocnemius and soleus. Reconstructed force from rEMGs was temporally correlated with measured force fluctuations across contraction intensities (average CCF peak: r = 0.65). The results indicate that individual surface rEMG has a low-frequency component that is temporally correlated with net force fluctuations during steady multi-muscle contractions and contributes to the reconstruction of force fluctuations across a wide range of contraction intensities. It suggests a potential applicability of individual surface EMGs for identifying the contributing muscles to controlling or disturbing isometric steady force in multi-muscle contractions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据