4.5 Article

A Wind Study of Venus's Cloud Top: New Doppler Velocimetry Observations

期刊

ATMOSPHERE
卷 12, 期 1, 页码 -

出版社

MDPI
DOI: 10.3390/atmos12010002

关键词

venus; atmosphere; atmosphere; dynamics; spectroscopy; doppler velocimetry

资金

  1. Portuguese Fundacao Para a Ciencia e a Tecnologia [PD/BD/128019/2016, PTDC/FIS-AST/29942/2017]
  2. FEDER through COMPETE [POCI-509 01-0145 FEDER-007672]
  3. Fundação para a Ciência e a Tecnologia [PTDC/FIS-AST/29942/2017, PD/BD/128019/2016] Funding Source: FCT

向作者/读者索取更多资源

Using Doppler velocimetry measurements, new insights into the horizontal wind velocities at Venus's cloud top were obtained, showing consistent zonal wind patterns and a stable meridional wind circulation structure.
At Venus's cloud top, the circulation is dominated by the superroration, where zonal wind speed peaks at similar to 100 ms(-1), in the low-to-middle latitudes. The constraining of zonal and meridional circulations is essential to understanding the mechanisms driving the superrotation of Venus's atmosphere, which are still poorly understood. We present new Doppler velocimetry measurements of horizontal wind velocities at Venus's cloud top, around 70 km altitude. These results were based on March 2015 observations at the Canada-France-Hawaii Telescope (CFHT, Mauna Kea, Hawaii), using ESPaDOnS. The Doppler velocimetry method used has already successfully provided zonal and meridional results in previous works led by P. Machado and R. Goncalves, proving to be a good reference ground-based technique in the study of the dynamics of Venus's atmosphere. These observations were carried out between 27 and 29 March 2015, using the Echelle SpectroPolarimetric Device for the Observation of Stars (ESPaDOnS) which provides simultaneous visible-near IR spectra from 370 to 1050 nm, with a spectral resolution of 81000 allowing wind field characterization in the scattered Franuhofer solar lines by Venus's cloud top on the dayside. The zonal velocities are consistent with previous results while also showing evidence of spatial variability, along planetocentric latitude and longitude (local-time). The meridional wind circulation presents a notably constant latitudinal structure with null velocities at lower latitudes, below 10 degrees N-S, and peak velocities of similar to 30 ms(-1), centered around 35 degrees N-S. The uncertainty of the meridional wind results from ground observations is of the same order as the uncertainty of meridional wind retrieved by space-based observations using cloud-tracking, as also shown by previous work led by R. Goncalves and published in 2020. These March 2015 measurements present a unique and valuable contribution to the study of horizontal wind at the cloud top, from a period when Doppler velocimetry was the only available method to do so, since no space mission was orbiting Venus between Venus Express ending in January 2015 and Akatsuki's orbit insertion in December 2015. These results from new observations provide (1) constraints on zonal wind temporal and spatial variability (latitude and local time), (2) constraints on the meridional wind latitudinal profile, (3) additional evidence of zonal and meridional wind stability for the period between 2011 and 2015 (along previous Doppler results) (4) further evidence of the consistency and robustness of our Doppler velocimetry method.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据