4.6 Review

Advances in Transparent Planar Optics: Enabling Large Aperture, Ultrathin Lenses

期刊

ADVANCED OPTICAL MATERIALS
卷 9, 期 5, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adom.202001692

关键词

diffractive waveplates; geometrical phase; liquid crystal polymers; liquid crystals; pellicle lenses; photoalignment materials; planar optics; switchable lenses

向作者/读者索取更多资源

This article introduces the unique transparent, planar optical films and recent advances enabled by specific optical designs, discussing their potential applications in augmented reality hardware.
Unlike electronics, optics do not follow Moore's law. This statement, expressed by Microsoft's Bernard Kress, refers to the hard challenges to solve in augmented reality hardware. While light sources have undergone numerous revolutions from candles to light emitting diodes, the evolution in transparent optics has been much slower. For transparent materials, variation of the shape, bulk refractive index, and/or its distribution leads to control of the transmitted beam in an optical system. An alternative, the control of the optical axis orientation in an anisotropic material in transparent micrometer-thin films on a variety of substrates, is explored here. In contrast to metamaterials, these diffractive waveplates have a continuous structure allowing multilayer/multifunctional planar optical systems with close to 100% efficiency across broad bands of wavelengths (ultraviolet to infrared) with customizable spectra. The low-cost and fast fabrication technology of this fourth generation of optics is scalable to very large aperture sizes. In addition to wearable adaptive optics, the technology enables thin and compact non-mechanical fast beam steering systems for light detection and ultralight space telescopes. This review will first serve as an introduction to these unique transparent, planar optical films, and then recent advances enabled by specific optical designs will be presented.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据