4.6 Article

Scalable Synthesis of Janus Particles with High Naturality

期刊

ACS SUSTAINABLE CHEMISTRY & ENGINEERING
卷 8, 期 48, 页码 17680-17686

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acssuschemeng.0c04929

关键词

Janus particles; green materials; scalable synthesis; interfacial polymerization; microfluidics

资金

  1. [NSF-1705891]

向作者/读者索取更多资源

Because of the increasing concerns about the ecological damage and negative health effects that may be caused by petrochemical-based microbeads, many countries are banning their use in a wide range of consumer products. One particular class of particles that may never reach their full potential because of such a ban is Janus particles, which are particles with two opposite properties. Despite significant progress in the scalable synthesis of Janus particles, most studies rely on petrochemical-based materials and solvents to enable their synthesis. In this report, we present a single-emulsion polymerization method for scalable synthesis of amphiphilic Janus particles with materials derived from plants. Soybean oil-epoxidized acrylate (SBOEA) monomers are polymerized in single-emulsion droplets of SBOEA, ethyl cellulose (EC), butyl acetate, and initiators that can be generated by either bulk or microfluidic emulsification, leading to the formation of amphiphilic soybean oil polymer/EC (SBOP/EC) Janus particles. Interfacial anchoring of the in situ-formed SBOP particles at the interface of the emulsion droplet plays a key role in the formation of the SBOP/EC Janus particles. Large-scale preparation of uniform SBOP/EC Janus particles is also demonstrated using a glass-silicon microfluidic device. Finally, the SBOP/EC Janus particles show potential to stabilize oil-in-water emulsions that can stay stable under flowing conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据