4.7 Article

Pomalidomide restores immune recognition of primary effusion lymphoma through upregulation of ICAM-1 and B7-2

期刊

PLOS PATHOGENS
卷 17, 期 1, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.ppat.1009091

关键词

-

资金

  1. Intramural Research Program of the National Institutes of Health, National Cancer Institute [Z01 BC010885]
  2. National Cancer Institute [02719]
  3. Bristol Myers Squibb Co. [02719]

向作者/读者索取更多资源

Pomalidomide increases ICAM-1 and B7-2 on PEL cells, leading to enhanced T-cell activation and NK-mediated cytotoxicity. This immune stimulation effect is mediated by Pom's interaction with cereblon and the PI3K pathway, providing a rationale for its potential therapy in KSHV-associated tumors like PEL.
Pomalidomide (Pom) is an immunomodulatory drug that has efficacy against Kaposi's sarcoma, a tumor caused by Kaposi's sarcoma-associated herpesvirus (KSHV). Pom also induces direct cytotoxicity in primary effusion lymphoma (PEL), a B-cell malignancy caused by KSHV, in part through downregulation of IRF4, cMyc, and CK1 alpha as a result of its interaction with cereblon, a cellular E3 ubiquitin ligase. Additionally, Pom can reverse KSHV-induced downregulation of MHCI and co-stimulatory immune surface molecules ICAM-1 and B7-2 on PELs. Here, we show for the first time that Pom-induced increases in ICAM-1 and B7-2 on PEL cells lead to an increase in both T-cell activation and NK-mediated cytotoxicity against PEL. The increase in T-cell activation can be prevented by blocking ICAM-1 and/or B7-2 on the PEL cell surface, suggesting that both ICAM-1 and B7-2 are important for T-cell co-stimulation by PELs. To gain mechanistic insights into Pom's effects on surface markers, we generated Pom-resistant (PomR) PEL cells, which showed about 90% reduction in cereblon protein level and only minimal changes in IRF4 and cMyc upon Pom treatment. Pom no longer upregulated ICAM-1 and B7-2 on the surface of PomR cells, nor did it increase T-cell and NK-cell activation. Cereblon-knockout cells behaved similarly to the pomR cells upon Pom-treatment, suggesting that Pom's interaction with cereblon is necessary for these effects. Further mechanistic studies revealed PI3K signaling pathway as being important for Pom-induced increases in these molecules. These observations provide a rationale for the study of Pom as therapy in treating PEL and other KSHV-associated tumors. Author summary Primary effusion lymphoma (PEL) is an aggressive B-cell lymphoma caused by Kaposi's sarcoma-associated herpesvirus (KSHV). KSHV encodes various genes that enable infected cells to evade recognition and elimination by the immune system. PEL cells are poorly recognized by T-cells and NK cells, partly due to KSHV-induced downregulation of immune stimulatory surface molecules ICAM-1 and B7-2. We previously found that a cereblon-binding immunomodulatory drug pomalidomide (Pom) can restore the levels of these markers on PELs. Here, we show that the increases in ICAM-1 and B7-2 induced by Pom leads to a functional increase in the recognition and killing of PELs by both T-cells and NK cells. Further, exposure of both the PEL cells and T-cells to Pom lead to an even higher T-cell stimulation providing strong evidence that Pom could help PEL patients by providing specific immune-stimulatory effect. We further perform mechanistic studies and show that Pom's cellular binding partner cereblon as well as the PI3K pathway are important for Pom-mediated increases in these surface markers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据