4.7 Article

Structural insights into loss of function of a pore forming toxin and its role in pneumococcal adaptation to an intracellular lifestyle

期刊

PLOS PATHOGENS
卷 16, 期 11, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.ppat.1009016

关键词

-

资金

  1. Wellcome Trust
  2. Royal Society Sir Henry Dale Fellowship [204457/Z/16/Z]
  3. Ramalingaswami Re-entry Fellowship (Dept. of Biotechnology, Govt. of India) [BT/RLF/Re-entry/42/2011]
  4. Dept. of Science & Technology, Govt. of India [EMR/2016/006067]
  5. Council of Scientific & Industrial Research, Govt. of India [27/0331/18/EMR-II]
  6. Science and Engineering Research Board, Govt. of India [EMR/2016/005909]

向作者/读者索取更多资源

The opportunistic pathogen Streptococcus pneumoniae has dual lifestyles: one of an asymptomatic colonizer in the human nasopharynx and the other of a deadly pathogen invading sterile host compartments. The latter triggers an overwhelming inflammatory response, partly driven via pore forming activity of the cholesterol dependent cytolysin (CDC), pneumolysin. Although pneumolysin-induced inflammation drives person-to-person transmission from nasopharynx, the primary reservoir for pneumococcus, it also contributes to high mortality rates, creating a bottleneck that hampers widespread bacterial dissemination, thus acting as a double-edged sword. Serotype 1 ST306, a widespread pneumococcal clone, harbours a non-hemolytic variant of pneumolysin (Ply-NH). Performing crystal structure analysis of Ply-NH, we identified Y150H and T172I as key substitutions responsible for loss of its pore forming activity. We uncovered a novel inter-molecular cation-pi interaction, governing formation of the transmembrane beta-hairpins (TMH) in the pore state of Ply, which can be extended to other CDCs. H150 in Ply-NH disrupts this interaction, while I172 provides structural rigidity to domain-3, through hydrophobic interactions, inhibiting TMH formation. Loss of pore forming activity enabled improved cellular invasion and autophagy evasion, promoting an atypical intracellular lifestyle for pneumococcus, a finding that was corroborated in in vivo infection models. Attenuation of inflammatory responses and tissue damage promoted tolerance of Ply-NH-expressing pneumococcus in the lower respiratory tract. Adoption of this altered lifestyle may be necessary for ST306 due to its limited nasopharyngeal carriage, with Ply-NH, aided partly by loss of its pore forming ability, facilitating a benign association of SPN in an alternative, intracellular host niche. Author summary Streptococcus pneumoniae, the main causative agent of pneumonia, triggers inflammation and tissue damage by producing a pore-forming toxin, pneumolysin (Ply). Ply-induced inflammation drives pneumococcal transmission from nasopharynx (its primary reservoir), but also contributes to host mortality, limiting its occupiable habitats. Here, we uncovered the structural basis for loss of pore-forming activity of a Ply variant, present in Serotype 1 ST306, and observed that this enabled adoption of an intracellular lifestyle, attenuating inflammatory responses and prolonging host tolerance of pneumococcus in the lower airways. This commensal-like lifestyle, resembling that of members of the mitis group of Streptococci, might have evolved within ST306 by loss of function ply mutations, compensating for limited nasopharyngeal carriage capacity by facilitating adaptation to an alternate niche.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据