4.6 Article

A viral guide RNA delivery system for CRISPR-based transcriptional activation and heritable targeted DNA demethylation in Arabidopsis thaliana

期刊

PLOS GENETICS
卷 16, 期 12, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pgen.1008983

关键词

-

资金

  1. Bill & Melinda Gates Foundation [OPP1210659]
  2. NIH [R35 GM130272]
  3. Bill and Melinda Gates Foundation [OPP1210659] Funding Source: Bill and Melinda Gates Foundation

向作者/读者索取更多资源

Plant RNA viruses are used as delivery vectors for their high level of accumulation and efficient spread during virus multiplication and movement. Utilizing this concept, several viral-based guide RNA delivery platforms for CRISPR-Cas9 genome editing have been developed. The CRISPR-Cas9 system has also been adapted for epigenome editing. While systems have been developed for CRISPR-Cas9 based gene activation or site-specific DNA demethylation, viral delivery of guide RNAs remains to be developed for these purposes. To address this gap we have developed a tobacco rattle virus (TRV)-based single guide RNA delivery system for epigenome editing in Arabidopsis thaliana. Because tRNA-like sequences have been shown to facilitate the cell-to-cell movement of RNAs in plants, we used the tRNA-guide RNA expression system to express guide RNAs from the viral genome to promote heritable epigenome editing. We demonstrate that the tRNA-gRNA system with TRV can be used for both transcriptional activation and targeted DNA demethylation of the FLOWERING WAGENINGEN gene in Arabidopsis. We achieved up to similar to 8% heritability of the induced demethylation phenotype in the progeny of virus inoculated plants. We did not detect the virus in the next generation, indicating effective clearance of the virus from plant tissues. Thus, TRV delivery, combined with a specific tRNA-gRNA architecture, provides for fast and effective epigenome editing. Author summary The discovery of CRISPR-CAS9 and its non-catalytic variants have provided enormous capacity for crop improvement and basic research by modifying the genome and the epigenome. The standard methods for delivering genome and epigenome editing reagents to plants consist of generating stable transgenic lines through tissue culture processes, which have several drawbacks including the need for plant regeneration and crossing. To overcome some of these challenges, plant virus-based platforms are being developed for genome editing. Although viruses have a limited cargo capacity, limiting the use of viruses to encode entire editing systems, guide RNAs have been successfully delivered to transgenic CAS9 expressing plants for genome editing. However, the use of viruses for CRISPR-based epigenome editing and transcriptional activation have not yet been explored. In this study we show that viral delivery of guide RNAs using a modified tobacco rattle virus can be used for transcriptional activation and heritable epigenome editing. This study advances the use of plant RNA viruses as delivery agents for epigenome editing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据