4.6 Article

A novel type of colistin resistance genes selected from random sequence space

期刊

PLOS GENETICS
卷 17, 期 1, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pgen.1009227

关键词

-

资金

  1. Wallenberg Foundation [2015.0069]
  2. Swedish Research Council [2017-01527]
  3. NIAID [AI129940, AI138576]

向作者/读者索取更多资源

Random sequences can generate novel antibiotic resistance determinants de novo, which act via specific peptide-protein interactions in the transmembrane domain. These peptides may potentially evolve as bona fide resistance determinants in natura.
Antibiotic resistance is a rapidly increasing medical problem that severely limits the success of antibiotic treatments, and the identification of resistance determinants is key for surveillance and control of resistance dissemination. Horizontal transfer is the dominant mechanism for spread of resistance genes between bacteria but little is known about the original emergence of resistance genes. Here, we examined experimentally if random sequences can generate novel antibiotic resistance determinants de novo. By utilizing highly diverse expression libraries encoding random sequences to select for open reading frames that confer resistance to the last-resort antibiotic colistin in Escherichia coli, six de novo colistin resistance conferring peptides (Dcr) were identified. The peptides act via direct interactions with the sensor kinase PmrB (also termed BasS in E. coli), causing an activation of the PmrAB two-component system (TCS), modification of the lipid A domain of lipopolysaccharide and subsequent colistin resistance. This kinase-activation was extended to other TCS by generation of chimeric sensor kinases. Our results demonstrate that peptides with novel activities mediated via specific peptide-protein interactions in the transmembrane domain of a sensory transducer can be selected de novo, suggesting that the origination of such peptides from non-coding regions is conceivable. In addition, we identified a novel class of resistance determinants for a key antibiotic that is used as a last resort treatment for several significant pathogens. The high-level resistance provided at low expression levels, absence of significant growth defects and the functionality of Dcr peptides across different genera suggest that this class of peptides could potentially evolve as bona fide resistance determinants in natura. Author summary We expressed over 100 million randomly generated DNA sequences in Escherichia coli and selected 6 variants that encode peptides that provide resistance to the last-resort antibiotic colistin. We show that the selected peptides are auxiliary activators of the two-component system PmrAB, and that resistance is mediated via modifications of the cell envelope causing decreased antibiotic uptake. This is the first example where random expression libraries have been employed to select for peptides that perform an activating function by direct peptide-protein interactions in vivo, adding support to the idea that non-coding DNA can serve as a substrate for de novo gene evolution. Additionally, the described peptides expand the narrow list of colistin resistance genes and further analyses of clinical isolates will be necessary to determine if similar resistance determinants have evolved in natura.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据