4.6 Article

Four different mechanisms for switching cell polarity

期刊

PLOS COMPUTATIONAL BIOLOGY
卷 17, 期 1, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pcbi.1008587

关键词

-

资金

  1. German Research Council (DFG) [Transregio 174]
  2. Volkswagen Foundation
  3. Max Planck Society
  4. Joachim Herz Foundation

向作者/读者索取更多资源

This study investigates different mechanisms for reversing polar protein patterns in response to signals, identifying four qualitatively distinct switching mechanisms with varying characteristics in implementing spatial toggle switch function. These characteristics help identify different switching mechanisms in natural systems.
The mechanisms and design principles of regulatory systems establishing stable polarized protein patterns within cells are well studied. However, cells can also dynamically control their cell polarity. Here, we ask how an upstream signaling system can switch the orientation of a polarized pattern. We use a mathematical model of a core polarity system based on three proteins as the basis to study different mechanisms of signal-induced polarity switching. The analysis of this model reveals four general classes of switching mechanisms with qualitatively distinct behaviors: the transient oscillator switch, the reset switch, the prime-release switch, and the push switch. Each of these regulatory mechanisms effectively implements the function of a spatial toggle switch, however with different characteristics in their nonlinear and stochastic dynamics. We identify these characteristics and also discuss experimental signatures of each type of switching mechanism. Author summary Cell polarity is key to processes such as cell growth, division, differentiation, and motility. Polarity arises from asymmetric distributions of proteins in the cell. How asymmetric patterns develop from uniform protein distributions, has been studied extensively. However, it is less clear how cells can switch such protein patterns in response to a signal. Here, we identify four qualitatively different mechanisms for how a polar protein pattern can be reversed. For each mechanism, we describe experimental signatures permitting their identification in natural systems. By providing possible regulatory circuits for these mechanisms, we also offer blueprints for synthetic implementations of switchable cell polarity, in artificial or engineered cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据