4.3 Article

The Diversified Impacts of Urban Morphology on Land Surface Temperature among Urban Functional Zones

出版社

MDPI
DOI: 10.3390/ijerph17249578

关键词

land surface temperature; urban functional zones; geographically weighted regression; random forest regression; urban morphology

资金

  1. National Natural Science Foundation of China [51878515, 41331175, 51378399]

向作者/读者索取更多资源

Local warming induced by rapid urbanization has been threatening residents' health, raising significant concerns among urban planners. Local climate zone (LCZ), a widely accepted approach to reclassify the urban area, which is helpful to propose planning strategies for mitigating local warming, has been well documented in recent years. Based on the LCZ framework, many scholars have carried out diversified extensions in urban zoning research in recent years, in which urban functional zone (UFZ) is a typical perspective because it directly takes into account the impacts of human activities. UFZs, widely used in urban planning and management, were chosen as the basic unit of this study to explore the spatial heterogeneity in the relationship between landscape composition, urban morphology, urban functions, and land surface temperature (LST). Global regression including ordinary least square regression (OLS) and random forest regression (RF) were used to model the landscape-LST correlations to screen indicators to participate in following spatial regression. The spatial regression including semi-parametric geographically weighted regression (SGWR) and multiscale geographically weighted regression (MGWR) were applied to investigate the spatial heterogeneity in landscape-LST among different types of UFZ and within each UFZ. Urban two-dimensional (2D) morphology indicators including building density (BD); three-dimensional (3D) morphology indicators including building height (BH), building volume density (BVD), and sky view factor (SVF); and other indicators including albedo and normalized difference vegetation index (NDVI) and impervious surface fraction (ISF) were used as potential landscape drivers for LST. The results show significant spatial heterogeneity in the Landscape-LST relationship across UFZs, but the spatial heterogeneity is not obvious within specific UFZs. The significant impact of urban morphology on LST was observed in six types of UFZs representing urban built up areas including Residential (R), Urban village (UV), Administration and Public Services (APS), Commercial and Business Facilities (CBF), Industrial and Manufacturing (IM), and Logistics and Warehouse (LW). Specifically, a significant correlation between urban 3D morphology indicators and LST in CBF was discovered. Based on the results, we propose different planning strategies to settle the local warming problems for each UFZ. In general, this research reveals UFZs to be an appropriate operational scale for analyzing LST on an urban scale.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据