4.5 Article

Freezing in a warming climate: Marked declines of a subnivean hibernator after a snow drought

期刊

ECOLOGY AND EVOLUTION
卷 11, 期 3, 页码 1264-1279

出版社

WILEY
DOI: 10.1002/ece3.7126

关键词

American pika; hoary marmot; Marmota caligata; Ochotona princeps; snow drought; vapor pressure deficit

资金

  1. Seattle City Light Wildlife Research Program
  2. U.S. Geological Survey
  3. National Park Service

向作者/读者索取更多资源

Recent research suggests that snow droughts associated with unusually warm winters may increase in frequency, affecting species that rely on snowpack for winter survival. The importance of winter weather in population dynamics and the varying responses to snow droughts among sympatric species are areas where further research is needed to understand the mechanisms behind these changes.
Recent snow droughts associated with unusually warm winters are predicted to increase in frequency and affect species dependent upon snowpack for winter survival. Changes in populations of some cold-adapted species have been attributed to heat stress or indirect effects on habitat from unusually warm summers, but little is known about the importance of winter weather to population dynamics and how responses to snow drought vary among sympatric species. We evaluated changes in abundance of hoary marmots (Marmota caligata) over a period that included a year of record-low snowpack to identify mechanisms associated with weather and snowpack. To consider interspecies comparisons, our analysis used the same a priori model set as a concurrent study that evaluated responses of American pikas (Ochotona princeps) to weather and snowpack in the same study area of North Cascades National Park, Washington, USA. We hypothesized that marmot abundance reflected mechanisms related to heat stress, cold stress, cold exposure without an insulating snowpack, snowpack duration, atmospheric moisture, growing-season precipitation, or select combinations of these mechanisms. Changes in marmot abundances included a 74% decline from 2007 to 2016 and were best explained by an interaction of chronic dryness with exposure to acute cold without snowpack in winter. Physiological stress during hibernation from exposure to cold, dry air appeared to be the most likely mechanism of change in marmot abundance. Alternative mechanisms associated with changes to winter weather, including early emergence from hibernation or altered vegetation dynamics, had less support. A post hoc assessment of vegetative phenology and productivity did not support vegetation dynamics as a primary driver of marmot abundance across years. Although marmot and pika abundances were explained by strikingly similar models over periods of many years, details of the mechanisms involved likely differ between species because pika abundances increased in areas where marmots declined. Such differences may lead to diverging geographic distributions of these species as global change continues.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据