4.8 Article

Pressure-Driven Mitochondrial Transfer Pipeline Generates Mammalian Cells of Desired Genetic Combinations and Fates

期刊

CELL REPORTS
卷 33, 期 13, 页码 -

出版社

CELL PRESS
DOI: 10.1016/j.celrep.2020.108562

关键词

-

资金

  1. NIH [T32CA009120, T32GM007185, P01GM099134, R01GM114188, R01GM073981, R01CA185189, R21CA227480, R01GM127985, P30CA016042]
  2. American Heart Association [18POST34080342]
  3. Broad Center of Regenerative Medicine and Stem Cell Research at UCLA
  4. David Geffen School of Medicine
  5. HHMI
  6. Air Force Office of Scientific Research [FA9550-15-1-0406]
  7. CIRM [RT3-07678]

向作者/读者索取更多资源

Generating mammalian cells with desired mitochondrial DNA (mtDNA) sequences is enabling for studies of mitochondria, disease modeling, and potential regenerative therapies. Mito-Punch, a high-throughput mitochondria) transfer device, produces cells with specific mtDNA-nuclear DNA (nDNA) combinations by transferring isolated mitochondria from mouse or human cells into primary or immortal mtDNA-deficient (rho 0) cells. Stable isolated mitochondria! recipient (SIMR) cells isolated in restrictive media permanently retain donor mtDNA and reacquire respiration. However, SIMR fibroblasts maintain a rho 0-like cell metabolome and transcriptome despite growth in restrictive media. We reprogrammed non-immortal SIMR fibroblasts into induced pluripotent stem cells (iPSCs) with subsequent differentiation into diverse functional cell types, including mesenchymal stem cells (MSCs), adipocytes, osteoblasts, and chondrocytes. Remarkably, after reprogramming and differentiation, SIMR fibroblasts molecularly and phenotypically resemble unmanipulated control fibroblasts carried through the same protocol. Thus, our MitoPunch pipeline enables the production of SIMR cells with unique mtDNA-nDNA combinations for additional studies and applications in multiple cell types.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据