4.7 Article

Momordica charantia polysaccharides modulate the differentiation of neural stem cells via SIRT1/Β-catenin axis in cerebral ischemia/reperfusion

期刊

STEM CELL RESEARCH & THERAPY
卷 11, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s13287-020-02000-2

关键词

Momordica charantia polysaccharides (MCPs); Neural stem cells (NSCs); Differentiation; SIRT1; β -Catenin

资金

  1. National Natural Science Foundation of China [81671164]
  2. Natural Science Foundation of the Jiangsu Higher Education Institutions of China [13KJA310005]
  3. Priority Academic Program Development of Jiangsu Higher Education Institution [201510313014Z]

向作者/读者索取更多资源

Background Stroke is the leading cause of long-term motor disability and cognitive impairment. Recently, neurogenesis has become an attractive strategy for the chronic recovery of stroke. It is important to understand the molecular mechanism that promotes neural stem cell (NSC) neurogenesis for future NSC-based therapies. Our previous study showed that Momordica charantia polysaccharides (MCPs) exerted neuroprotective effects on stroke via their anti-oxidant and anti-inflammation activities. However, it remains unknown whether MCPs promote NSC neurogenesis after cerebral ischemic/reperfusion injury (IRI). Methods We investigated MCPs' function in differentiation of neural stem cells (NSCs) in vivo and in vitro experiments. Based on a middle cerebral artery occlusion (MCAO) rat model, the effect of MCPs on neuronal differentiation after MCAO was analyzed. Primary NSCs and neural stem cell line C17.2 were cultured and subjected to glutamate stimulation to establish the cell model of IRI. We evaluated the effect of MCPs on NSC differentiation in IRI cell model by Western blot and immunofluorescence staining. The SIRT1 activity of NSCs post glutamate stimulation was also evaluated by CELL SIRT1 COLORIMETRY ASSAY KIT. In addition, molecular mechanism was clarified by employing the activator and inhibitor of SIRT1. Results MCPs had no effects on the differentiation of neural stem cells under physiological conditions while shifted NSC differentiation potential from the gliogenic to neurogenic lineage under pathological conditions. Activation of SIRT1 with MCPs was responsible for the neuronal differentiation of C17.2-NSCs. The neuronal differentiation effect of MCPs was attributed to upregulation SIRT1-mediated deacetylation of beta-catenin. MCP-induced deacetylation via SIRT1 promoted nuclear accumulation of beta-catenin in NSCs. Conclusion Our findings indicate that the deacetylation of beta-catenin by SIRT1 represents a critical mechanism of action of MCPs in promoting NSC neuronal differentiation. It provides an improved understanding of molecular mechanism underlying neuroprotective effects of MCPs in IRI, indicating its potential role on treating ischemic stroke especially chronic recovery.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据