4.7 Article

Efficient separation of strontium radionuclides from high-salinity wastewater by zeolite 4A synthesized from Bayer process liquids

期刊

SCIENTIFIC REPORTS
卷 11, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-021-81255-y

关键词

-

资金

  1. Ministry of Education Science and Technological Development of the Republic of Serbia
  2. bilateral project Serbia-Croatia

向作者/读者索取更多资源

This study investigated the removal of Sr radionuclides using the zeolite Z4A produced from the Bayer process liquids, showing fast and efficient removal with high sorption capacity. The selectivity of Z4A decreased in the order Sr>Ca>K>Mg>Na, and Z4A exhibited high stability in retaining radionuclides, making it a cost-effective and selective medium for Sr removal, especially in high salinity effluents.
The efficient, selective, and economical sorbents for the removal of Sr radionuclides are largely needed for the decontamination of effluents with high salinity. In this study, the removal of Sr was investigated using the zeolite produced from the Bayer process liquids. Based on the XRD, SEM/EDS analysis, the product was pure and highly crystalline zeolite 4A (Z4A). Removal of Sr was fast (5 min for 100% removal at 8.80 mg/L), with high maximum sorption capacity (252.5 mg/L), and independent on the initial pH in the range 3.5-9.0. Specific sorption of Sr by protonated groups on the Z4A surface was operating in addition to ion-exchange with Na ions. The selectivity of Z4A decreased in the order Sr>Ca>K>Mg>Na. 84% of Sr was separated from seawater within 5 min, at the Z4A dose of 5 g/L, while efficiency increased to 99% using the dose of 20 g/L. Desorption of radioisotope Sr-89 from seawater/Z4A solid residue was very low in deionized water (0.1-0.2%) and groundwater (0.7%) during 60 days of leaching. Z4A is a cost-effective, selective, and high-capacity medium for Sr removal, which provides high stability of retained radionuclides.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据