4.7 Article

A latent highly activity energetic fuel: thermal stability and interfacial reaction kinetics of selected fluoropolymer encapsulated sub-micron sized Al particles

期刊

SCIENTIFIC REPORTS
卷 11, 期 1, 页码 -

出版社

NATURE RESEARCH
DOI: 10.1038/s41598-020-80865-2

关键词

-

资金

  1. National Natural Science Foundation of China [21975024]
  2. Key Field Funds of General Armament Department [61407200205]

向作者/读者索取更多资源

The study indicates that fluoropolymer encapsulated sub-micron sized aluminum particles can enhance the active content and heat release efficiency of aluminum. Choosing the appropriate fluorine rubber F2311 and ensuring a minimum coating thickness of 3.6 nm are crucial. Coated samples were found to be spherical in shape, with a median particle size of around 217.7 nm and a coating thickness of 3.6 nm.
Aluminum can enhance heat release of energetic composite in theory. However, the commonly used micron aluminum powder has several short comings like incomplete reaction and low reaction rate. Meanwhile, outer oxide shell of nano Al particle is thicker than micro Al, which leads to low active aluminum content and insufficient heat release. On the basis of previous research, reported fluoropolymers modified Al particles were compared and suitable F2311was chosen. Sub-micron scale Al (median particle size around 200 nm) was regarded as optimum coated object in consideration of activity content of aluminum powder changing with particle size. The super fine Al powder was prepared by electrical explosion method, and encapsulated in situ by selected fluorine rubber F2311. The experiments on thermal stability demonstrated F2311 coating thickness should be no less than 3.6 nm. These results were further confirmed by EXPLO5 thermo dynamic calculation. Calculated results showed that reaction characters of F2311 encapsulated Al exceeded conventional nano Al regardless of combustion and explosion. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), laser particle size analyzer and X-ray photoelectron spectroscopy (XPS) were used to characterize coated products' morphology, particle size distribution and interfacial bonding information. The results showed that the coated samples were generally spherical shape, with median particle size of 217.7 nm and coating thickness of 3.6 nm. The coating shell contained a small amount of alumina and aluminum fluoride besides fluoropolymer. The non-isothermal dynamic equations of Al/F2311 and Al/Al2O3 were deduced by TG/DSC simultaneous thermal analysis. Compared with conventional nano-Al, the apparent activation energy of Al/F2311 decreased by 45 kJ/mol and the first exothermic peak temperature was about 10 degrees C earlier. Moreover, heat release was nearly twice as conventional nano-Al. TG-DSC-MS coupled measurements certified that active Al was enveloped by 'fluorine atmosphere' while F2311 decomposed in range of 200-400 degrees C. Alumina was replaced with aluminum fluoride inside coating layer during 400-550 degrees C, which broadened the diffusion path and then accelerated the permeation of oxidizing gas. In addition, the exothermic of Al-F was obviously larger than Al-O. Consequently, the oxidation reaction was activated rapidly, especially in initial exothermic period. Fluoropolymer encapsulated sub-micron sized Al was a latent highly activity energetic fuel and a potential candidate for aluminum powder.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据