4.7 Article

Reliability of the Dynavision task in virtual reality to explore visuomotor phenotypes

期刊

SCIENTIFIC REPORTS
卷 11, 期 1, 页码 -

出版社

NATURE RESEARCH
DOI: 10.1038/s41598-020-79885-9

关键词

-

资金

  1. Association Nationale de la Recherche et de la Technologie [2019-0682] Funding Source: Medline

向作者/读者索取更多资源

The study shows high test-retest reliability for the visuomotor reaction task in virtual reality among healthy physically-active students, with VR-headset sensors capturing valuable information on individual visual-perceptual strategies. Factor analysis and hierarchical clustering point to head movements, video-games practice, and ball-tracking sports as critical cues for drawing visuomotor phenotypes among participants.
Daily-life behaviors strongly rely on visuomotor integration, a complex sensorimotor process with obvious plasticity. Visual-perceptive and visual-cognitive functions are degraded by neurological disorders and brain damage, but are improved by vision training, e.g. in athletes. Hence, developing tools to evaluate/improve visuomotor abilities has found echo among psychologists, neurophysiologists, clinicians and sport professionals. Here we implemented the Dynavision visuomotor reaction task in virtual reality (VR) to get a flexible tool to place high demands on visual-perceptive and visual-cognitive processes, and explore individual abilities in visuomotor integration. First, we demonstrated high test-retest reliability for the task in VR among healthy physically-active students (n=64, 32 females). Second, the capture of head movements thanks to the VR-headset sensors provided new and reliable information on individual visual-perceptual strategies, which added significant value to explore visuomotor phenotypes. A factor analysis of mixed data and hierarchical clustering on principal components points to head movements, video-games practice and ball-tracking sports as critical cues to draw visuomotor phenotypes among our participants. We conclude that the visuomotor task in VR is a reliable, flexible and promising tool. Since VR nowadays can serve e.g. to modulate multisensorial integration by creating visual interoceptive-exteroceptive conflicts, or placing specifically designed cognitive demand, much could be learned on complex integrated visuomotor processes through VR experiments. This offers new perspectives for post brain injury risk evaluation, rehabilitation programs and visual-cognitive training.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据