4.7 Article

Enhanced impact-resistance of aeronautical quasi-isotropic composite plates through diffused water molecules in epoxy

期刊

SCIENTIFIC REPORTS
卷 11, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-021-81443-w

关键词

-

向作者/读者索取更多资源

The presence of moisture content significantly enhances the impact-resistance of carbon fiber/epoxy quasi-isotropic composite plates, with wet plates showing better performance in absorbing impact energy and reducing damage compared to dry plates. This improvement is attributed to the increased elastic limit and ductility of the epoxy due to the presence of moisture, leading to enhanced impact-resistance in wet composite plates.
In order to elucidate the hygroscopic effects on impact-resistance of carbon fiber/epoxy quasi-isotropic composite plates, low-velocity impact tests are conducted on dry and hygroscopically conditioned plates, respectively, under identical configurations. For the impact tests, plates were immersed in the hot water at 80 degrees C to absorb a different amount of moisture content (MC). Experimental results reveal that the presence of the MC plays a pivotal role by improving the impact-resistance of composite plates. Plates with higher percentage of MC could behave elastically to a larger strain, yielding larger deflection under impact loading. From SEM fractographies, it is observed that small disbanding grows at the interface of epoxy and carbon fiber due to absorbed MC. After absorbing MC, most of impact energy is dissipated in hygroscopic conditioned composite plates through elastic deformation and overall less damage is induced in wet composite plates compare to the dry plate. We can postulate that the presence of MC increases the elastic limit as well as ductility of the epoxy by promoting chain segmental mobility of the polymer molecules, which eventually leads to the enhancement of the impact-resistance of wet quasi-isotropic composite plates in comparison with the dry plate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据