4.7 Article

Facile one-pot green synthesis of Ag-ZnO Nanocomposites using potato peeland their Ag concentration dependent photocatalytic properties

期刊

SCIENTIFIC REPORTS
卷 10, 期 1, 页码 -

出版社

NATURE RESEARCH
DOI: 10.1038/s41598-020-77426-y

关键词

-

资金

  1. Deanship of Scientific Research at King Saud University [RGP-1441-305]

向作者/读者索取更多资源

Herein, a facile green synthesis route was reported for the synthesis of Ag-ZnO nanocomposites using potato residue by simple and cost effective combustion route and investigated the photocatalytic degradation of methylene blue (MB) dye. In the preparation potato extract functioned as a biogenic reducing as well as stabilizing agent for the reduction of Ag+, thus eliminating the need for conventional reducing/stabilizing agents. Ag-ZnO nanocomposites with different Ag mass fractions ranging from 2 to 10% were characterized by using XRD, FT-IR, XPS, SEM, TEM, and UV-Vis spectroscopy. XRD analysis revealed that the as prepared Ag-ZnO nanocomposites possessed high crystallinity with hexagonal wurtzite structure. TEM and SEM images showed that the Ag-ZnO nanocomposites in size ranging from 15 to 25 nm have been obtained, and the particle size was found to increase with the increase in percentage of Ag. FTIR results confirmed the characteristics band of ZnO along with the Ag bands. XPS analysis revealed a pair of doublet with peaks corresponding to Ag and a singlet with peaks corresponding to ZnO. With the increase of concentration of Ag in ZnO, the intensity of NBE emission in the PL spectra was observed to be decrease, resulted to the high photocatalytic activity. Photocatalytic properties of Ag-ZnO nanocomposites evaluated against the MB dye under visible-light irradiation showed superior photodegradation of similar to 96% within 80 min for 2% Ag-ZnO nanocomposites. The apparent reaction rate constant for 2% Ag-ZnO nanocomposites was higher than that of other nanocomposites, which proved to be the best photocatalyst for the maximum degradation of MB. Furthermore, various functional parameters such as dosing, reaction medium, concentration variation were performed on it for better understanding. The enhancement in photocatalytic degradation might be due to the presence of Ag nanoparticles on the surface of ZnO by minimizing the recombination of photo induced charge carriers in the nanocomposites.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据