4.6 Article

A Comprehensive Study on Processing Ti-6Al-4V ELI with High Power EDM

期刊

MATERIALS
卷 14, 期 2, 页码 -

出版社

MDPI
DOI: 10.3390/ma14020303

关键词

EDM; titanium alloy; machining performances; white layer; heat affected zone

向作者/读者索取更多资源

The study focused on experimental investigation of Ti-6Al-4V ELI machining using high power EDM and graphite electrode. It evaluated machining performances and surface roughness indexes, analyzing the effects of pulse-on current and time on the results with statistical tools.
Electrical Discharge Machining (EDM) consists of a non-conventional machining process, which is widely used in modern industry, and especially in machining hard-to-cut materials. By employing EDM, complex shapes and geometries can be produced, with high dimensional accuracy. Titanium alloys, due to their unique inherent properties, are extensively utilized in high end applications. Nevertheless, they suffer from poor machinability, and thus, EDM is commonly employed for their machining. The current study presents an experimental investigation regarding the process of Ti-6Al-4V ELI with high power EDM, using a graphite electrode. Control parameters were the pulse-on current (I-p) and time (T-on), while Machining performances were estimated in terms of Material Removal Rate (MRR), Tool Material Removal Rate (TMRR), and Tool Wear Ratio (TWR). The machined Surface Roughness was calculated according to the Ra and the Rt values, by following the ISO 25178-2 standards. Furthermore, the EDMed surfaces were observed under optical and SEM microscopy, while their cross sections were also studied in order the Average White Layer Thickness (AWLT) and the Heat Affected Zone (HAZ) to be measured. Finally, for the aforementioned indexes, Analysis Of Variance was performed, whilst for the MRR and TMRR, based on the Response Surface Method (RSM), semi-empirical correlations were presented. The scope of the current paper is, through a series of experiments and by employing statistical tools, to present how two main machining parameters, i.e., pulse-on current and time, affect major machining performance indexes and the surface roughness.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据