4.6 Article

Effect of Asymmetric Accumulative Roll-Bonding process on the Microstructure and Strength Evolution of the AA1050/AZ31/AA1050 Multilayered Composite Materials

期刊

MATERIALS
卷 13, 期 23, 页码 -

出版社

MDPI
DOI: 10.3390/ma13235401

关键词

magnesium alloy; aluminum; multilayered materials; asymmetric accumulative roll-bonding (AARB); microstructure; strength; FEM analysis

资金

  1. National Scientific Centre (Poland) [DEC-2013/11/B/ST8/04352/1]
  2. National Centre for Research and Development (Poland) [DWP-TECHMATSTRATEG-II/319/2019]

向作者/读者索取更多资源

This paper aimed to propose the fabrication of light, Al/Mg/Al multilayered composite. Initially prepared three-layered feedstock was subjected to deformation during four rolling cycles (passes) using the conventional and modified accumulative roll bonding (ARB) processes at 400 degrees C, thanks to which 24-layered composite materials were produced. The modification of the ARB process was based on the application of the rotational speed asymmetry (asymmetric accumulative roll bonding, AARB). It was adopted that the initial thickness of the composite stack amounted to 3 mm (1 mm for each composite). The rolling was done in the laboratory duo D150 rolling mill with the application of the roll rotational speed asymmetry and symmetry a(v) = 1.0 (ARB) and a(v) = 1.25 and 1.5 (AARB). In this manuscript, it was proved that introducing the asymmetry into the ARB process for the tested Al/Mg/Al composite has an impact on the activation of additional shear bands, which results in higher fragmentation of the structure in comparison to the symmetrical process. Due to the application of the AARB, the reduction of the grain size by 17% was obtained, in comparison to the conventional ARB. Not to mention that at the same time there was an increase in strength of the fabricated multilayered composite.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据