4.3 Article

Kruppel-like factor 15 regulates fuel switching between glucose and fatty acids in brown adipocytes

期刊

JOURNAL OF DIABETES INVESTIGATION
卷 12, 期 7, 页码 1144-1151

出版社

WILEY
DOI: 10.1111/jdi.13511

关键词

Brown adipose tissue; Fuel switching; Kruppel‐ like factor 15

资金

  1. Japan Society for the Promotion of Science KAKENHI [JP18K08478]

向作者/读者索取更多资源

The study highlights the importance of KLF15 in regulating fuel switching between glucose and fatty acids in brown adipose tissue. This is achieved through its impact on fatty acid and glucose oxidation, as well as pyruvate dehydrogenase complex activity in BAT.
Aims/Introduction Brown adipose tissue (BAT) utilizes large amounts of fuel for thermogenesis, but the mechanism by which fuel substrates are switched in response to changes in energy status is poorly understood. We have now investigated the role of Kruppel-like factor 15 (KLF15), a transcription factor expressed at a high level in adipose tissue, in the regulation of fuel utilization in BAT. Materials and Methods Depletion or overexpression of KLF15 in HB2 differentiated brown adipocytes was achieved by adenoviral infection. Glucose and fatty acid oxidation were measured with radioactive substrates, pyruvate dehydrogenase complex activity was determined with a colorimetric assay, and gene expression was examined by reverse transcription and real-time polymerase chain reaction analysis. Results Knockdown of KLF15 in HB2 cells attenuated fatty acid oxidation in association with downregulation of the expression of genes related to this process including Acox1 and Fatp1, whereas it increased glucose oxidation. Expression of the gene for pyruvate dehydrogenase kinase 4 (PDK4), a negative regulator of pyruvate dehydrogenase complex, was increased or decreased by KLF15 overexpression or knockdown, respectively, in HB2 cells, with these changes being accompanied by a respective decrease or increase in pyruvate dehydrogenase complex activity. Chromatin immunoprecipitation showed that Pdk4 is a direct target of KLF15 in HB2 cells. Finally, fasting increased expression of KLf15, Pdk4 and genes involved in fatty acid utilization in BAT of mice, whereas refeeding suppressed Klf15 and Pdk4 expression. Conclusions Our results implicate KLF15 in the regulation of fuel switching between glucose and fatty acids in response to changes in energy status in BAT.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据