4.5 Article

Study on nonlinear vibrations of temperature- and size-dependent FG porous arches on elastic foundation using nonlocal strain gradient theory

期刊

EUROPEAN PHYSICAL JOURNAL PLUS
卷 136, 期 1, 页码 -

出版社

SPRINGER HEIDELBERG
DOI: 10.1140/epjp/s13360-020-00959-8

关键词

-

向作者/读者索取更多资源

A nonlocal strain gradient theory is developed for studying large amplitude vibrations of arches made of functionally graded porous material. Various models, including Reddy's third-order model, Timoshenko's first-order model, and the classical Euler-Bernoulli model, are analyzed in the study. Parametric studies are conducted to investigate the effects of different parameters on the frequencies of FG porous arches.
A nonlocal strain gradient theory is developed in this paper to study the large amplitude vibrations of arches made of functionally graded (FG) porous material. The case of shallow arches resting on nonlinear elastic foundation is modeled via a general higher-order shear deformation theory. The third-order model of Reddy, the first-order model of Timoshenko, and the classical model of Euler-Bernoulli are analyzed. Thermomechanical properties of the arch exposed to the uniform thermal field are assumed to be temperature dependent. The nonlinear motion equations of the arch are established by employing Hamilton's principle and the von Karman type of geometric nonlinearity. The two-step perturbation technique and the Galerkin method are utilized to solve the nonlinear governing equations. The size-dependent linear and nonlinear frequencies of the arch are obtained for the immovable pinned-pinned boundary conditions. The comparison studies are performed to verify the present solution method with the provided data in the literature, and a good agreement is observed. The novel parametric studies covered in this research include the effects of several parameters such as elastic foundation, nonlocal and length scale parameters, porosity, temperature field, power law index, and geometrical parameters on the frequencies of FG porous arches in detail.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据