4.8 Review

Nanocatalyst Design for Long-Term Operation of Proton/Anion Exchange Membrane Water Electrolysis

期刊

ADVANCED ENERGY MATERIALS
卷 11, 期 4, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.202003188

关键词

hydrogen evolution reaction; long‐ term stability; oxygen evolution reaction; water electrolysis

资金

  1. NRF of Korea [NRF-2020R1A2B5B03002475, 2019R1A6A1A11044070, 2019M3E6A1064709, 2018R1C1B6004272]

向作者/读者索取更多资源

Long-term catalyst stability is crucial for the commercialization of hydrogen generation through electrocatalytic water-splitting. Current research focuses on enhancing electrode activity, but this review highlights the importance of catalyst stability and outlines strategies for improving long-term performance.
Long-term catalyst stability is essential for the commercialization of hydrogen generation by electrocatalytic water-splitting. Current research, however, mainly focuses on improving electrode activity of the hydrogen evolution reaction (HER) at the cathode and oxygen evolution reaction (OER) at the anode of electrolyzers, although the maintenance of long-term performance poses a bigger challenge. To shift the focus of research to the issue of catalyst stability, this review describes the mechanism of HER/OER catalyst degradation based on catalyst dissolution and agglomeration, and summarizes representative catalyst designs for achieving stable catalysts in long-term water electrolysis operation. Additionally, various strategies toward the improvement of HER/OER stability are evaluated, and potential effective guidelines for the design of stable catalysts are suggested.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据