4.8 Article

Electron Delocalization and Dissolution-Restraint in Vanadium Oxide Superlattices to Boost Electrochemical Performance of Aqueous Zinc-Ion Batteries

期刊

ADVANCED ENERGY MATERIALS
卷 10, 期 48, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.202001852

关键词

2D superlattices; cathode dissolution suppression; charge redistribution; polymer interface modulation; Zn‐ ion diffusion

资金

  1. Discovery Early Career Researcher Award (DECRA) of the Australian Research Council [DE180101478]

向作者/读者索取更多资源

Aqueous zinc-ion batteries (ZIBs) have triggered a great deal of scientific research and become a promising alternative for large-scale energy storage applications, owing to the unique merits of high volumetric energy density, abundance of zinc resources, eco-friendliness, and safety. The pace of progress of ZIB development, however, is hindered by their poor reversibility and sluggish kinetics, derived from the dissolution of active materials in aqueous electrolytes and the strong electrostatic interactions between Zn2+ and the cathode lattice. Herein, a vanadium oxide (V2O5-x)/polyaniline (PANI-V) superlattice structure is demonstrated as a model of superlattice structural engineering to overcome these weaknesses. In this superlattice, the PANI layer not only plays the role of a spacer to expand the V2O5-x interlayer spacing but also serves as a conductive capacity contributor. Moreover, the PANI layer servers as structural stabilizer to restrain the dissolution of V2O5-x active materials in aqueous electrolytes. In addition, it introduces an interface effect to modulate the charge distribution of the V2O5-x monolayer, promoting Zn-ion diffusion into the structure. Correspondingly, weakening the electrostatic interactions and supressing the active materials dissolution synergistically boosts the electrochemical performance for Zn-ion storage. This work paves the way for the development/improvement of cathodes for aqueous zinc-ion batteries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据