4.8 Article

4D imaging reveals mechanisms of clay-carbon protection and release

期刊

NATURE COMMUNICATIONS
卷 12, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-020-20798-6

关键词

-

资金

  1. Princeton Environmental Institute through the Grand Challenges program
  2. Carbon Mitigation Initiative

向作者/读者索取更多资源

This study investigates the dynamics of clay-carbon interactions in soil, revealing the mechanisms of carbon sorption and release by clay. The authors suggest improvements relevant to soil carbon models based on their findings.
Soil absorbs about 20% of anthropogenic carbon emissions annually, and clay is one of the key carbon-capture materials. Although sorption to clay is widely assumed to strongly retard the microbial decomposition of soil organic matter, enhanced degradation of clay-associated organic carbon has been observed under certain conditions. The conditions in which clay influences microbial decomposition remain uncertain because the mechanisms of clay-organic carbon interactions are not fully understood. Here we reveal the spatiotemporal dynamics of carbon sorption and release within model clay aggregates and the role of enzymatic decomposition by directly imaging a transparent smectite clay on a microfluidic chip. We demonstrate that clay-carbon protection is due to the quasi-irreversible sorption of high molecular-weight sugars within clay aggregates and the exclusion of bacteria from these aggregates. We show that this physically-protected carbon can be enzymatically broken down into fragments that are released into solution. Further, we suggest improvements relevant to soil carbon models. Clays in soil impact atmospheric CO2 by stabilizing soil organic matter, yet the dynamics of this process under future climate conditions are unknown. Here the authors present a way to observe clay-carbon dynamics within micro-aggregates using 4D imaging and a customized microfluidic chip.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据