4.8 Article

Enantioselective preparation of mechanically planar chiral rotaxanes by kinetic resolution strategy

期刊

NATURE COMMUNICATIONS
卷 12, 期 1, 页码 -

出版社

NATURE RESEARCH
DOI: 10.1038/s41467-020-20372-0

关键词

-

资金

  1. Scientific Research on Innovative Areas Advanced Molecular Transformations by Organocatalysts [JP23105008]
  2. Middle Molecular Strategy [JP16H01148]
  3. JSPS Research Fellowships for Young Scientists [JP15J10954]
  4. [JP26221301]
  5. [JP15K18827]

向作者/读者索取更多资源

Since the discovery of mechanically planar chiral rotaxanes and topologically chiral catenanes, their asymmetric synthesis has been a long-standing challenge. Here, the authors report enantioselective preparation of mechanically planar chiral rotaxanes with up to 99.9% ee in 29% yield.
Asymmetric synthesis of mechanically planar chiral rotaxanes and topologically chiral catenanes has been a long-standing challenge in organic synthesis. Recently, an excellent strategy was developed based on diastereomeric synthesis of rotaxanes and catenanes with mechanical chirality followed by removal of the chiral auxiliary. On the other hand, its enantioselective approach has been quite limited. Here, we report enantioselective preparation of mechanically planar chiral rotaxanes by kinetic resolution of the racemates via remote asymmetric acylation of a hydroxy group in the axis component, which provides an unreacted enantiomer in up to>99.9% ee in 29% yield (the theoretical maximum yield of kinetic resolution of racemate is 50%). While the rotaxane molecules are expected to have conformational complexity, our original catalysts enabled to discriminate the mechanical chirality of the rotaxanes efficiently with the selectivity factors in up to 16. Since the discovery of mechanically planar chiral rotaxanes and topologically chiral catenanes, their asymmetric synthesis has been a long-standing challenge. Here, the authors report enantioselective preparation of mechanically planar chiral rotaxanes with up to 99.9% ee in 29% yield.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据