4.8 Article

Waveguide photoreactor enhances solar fuels photon utilization towards maximal optoelectronic - photocatalytic synergy

期刊

NATURE COMMUNICATIONS
卷 12, 期 1, 页码 -

出版社

NATURE RESEARCH
DOI: 10.1038/s41467-020-20613-2

关键词

-

资金

  1. Natural Sciences and Engineering Research Council of Canada-Discovery program
  2. Ontario Research Fund-Research Excellence Program
  3. University of Toronto

向作者/读者索取更多资源

The study shows that distributing light intensity can increase the efficiency of photocatalytic reactions, especially in the gas phase reverse water gas shift reaction, using an optical waveguide as a carrier can significantly enhance the reaction rate. Furthermore, distributing light intensity along the length of the waveguide helps to increase the optical path, thereby increasing CO production rate.
A conventional light management approach on a photo-catalyst is to concentrate photo-intensity to enhance the catalytic rate. We present a counter-intuitive approach where light intensity is distributed below the electronic photo-saturation limit under the principle of light maximization. By operating below the saturation point of the photo-intensity induced hydroxide growth under reactant gaseous H-2+CO2 atmosphere, a coating of defect engineered In2O3-x(OH)(y) nanorod Reverse Water Gas Shift solar-fuel catalyst on an optical waveguide outperforms a coated plane by a factor of 2.2. Further, light distribution along the length of the waveguide increases optical pathlengths of the weakly absorptive green and yellow wavelengths, which increases CO product rate by a factor of 8.1-8.7 in the visible. Synergistically pairing with thinly doped silicon on the waveguide enhances the CO production rate by 27% over the visible. In addition, the persistent photoconductivity behavior of the In2O3-x(OH)(y) system enables CO production at a comparable rate for 2h after turning off photo-illumination, enhancing yield with 44-62% over thermal only yield. The practical utility of persistent photocatalysis was demonstrated through outdoor solar concentrator tests, which after a day-and-night cycle showed CO yield increase of 19% over a day-light only period. Concentrating photo-intensities on photocatalyst has diminishing returns. Here the authors show the catalyst on glass rod waveguide at optimal low intensity results in high efficiency in the gas phase reverse water gas shift reaction in an annular glass cylindrical rod photoreactor.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据