4.8 Article

Myonuclear content regulates cell size with similar scaling properties in mice and humans

期刊

NATURE COMMUNICATIONS
卷 11, 期 1, 页码 -

出版社

NATURE RESEARCH
DOI: 10.1038/s41467-020-20057-8

关键词

-

资金

  1. Norwegian Research Council [240374]
  2. US-Norway Fulbright Foundation for Educational Exchange
  3. Cincinnati Children's Hospital Research Foundation
  4. National Institutes of Health [R01AR068286, R01AG059605]
  5. Pew Charitable Trusts

向作者/读者索取更多资源

Muscle fibers are the largest cells in the body, and one of its few syncytia. Individual cell sizes are variable and adaptable, but what governs cell size has been unclear. We find that muscle fibers are DNA scarce compared to other cells, and that the nuclear number (N) adheres to the relationship N=aV(b) where V is the cytoplasmic volume. N invariably scales sublinearly to V (b<1), making larger cells even more DNA scarce. N scales linearly to cell surface in adult humans, in adult and developing mice, and in mice with genetically reduced N, but in the latter the relationship eventually fails when they reach adulthood with extremely large myonuclear domains. Another exception is denervation-atrophy where nuclei are not eliminated. In conclusion, scaling exponents are remarkably similar across species, developmental stages and experimental conditions, suggesting an underlying scaling law where DNA-content functions as a limiter of muscle cell size. Muscle fibers are the largest cells in the body and contain less DNA per unit volume than other cells even if they have multiple nuclei. Here, the authors show that the number of nuclei regulates the cell size with similar scaling properties in mice and humans.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据