4.8 Article

Simultaneous Zn2+ tracking in multiple organelles using super-resolution morphology-correlated organelle identification in living cells

期刊

NATURE COMMUNICATIONS
卷 12, 期 1, 页码 -

出版社

NATURE RESEARCH
DOI: 10.1038/s41467-020-20309-7

关键词

-

资金

  1. Natural Science Foundation of China [21977044, 21731004, 21907050, 91953201]
  2. Natural Science Foundation of Jiangsu Province [BK20190282]
  3. Excellent Research Program of Nanjing University [ZYJH004]
  4. Department of Cancer Biology, University of Cincinnati College of Medicine

向作者/读者索取更多资源

The study introduced a new method (Zn-STIMO) for tracking zinc ions in multiple organelles using structured illumination microscopy and a single zinc ion fluorescent probe. By developing a new zinc ion fluorescent probe and combining it with SIM imaging technology, the study successfully achieved morphology-correlated organelle identification in living cells.
Zn2+ plays important roles in metabolism and signaling regulation. Subcellular Zn2+ compartmentalization is essential for organelle functions and cell biology, but there is currently no method to determine Zn2+ signaling relationships among more than two different organelles with one probe. Here, we report simultaneous Zn2+ tracking in multiple organelles (Zn-STIMO), a method that uses structured illumination microscopy (SIM) and a single Zn2+ fluorescent probe, allowing super-resolution morphology-correlated organelle identification in living cells. To guarantee SIM imaging quality for organelle identification, we develop a new turn-on Zn2+ fluorescent probe, NapBu-BPEA, by regulating the lipophilicity of naphthalimide-derived Zn2+ probes to make it accumulate in multiple organelles except the nucleus. Zn-STIMO with this probe shows that CCCP-induced mitophagy in HeLa cells is associated with labile Zn2+ enhancement. Therefore, direct organelle identification supported by SIM imaging makes Zn-STIMO a reliable method to determine labile Zn2+ dynamics in various organelles with one probe. Finally, SIM imaging of pluripotent stem cell-derived organoids with NapBu-BPEA demonstrates the potential of super-resolution morphology-correlated organelle identification to track biospecies and events in specific organelles within organoids. Subcellular Zn2+ compartmentalisation is essential for cell biology. Here the authors make a turn-on fluorescent Zn2+ probe that localises to multiple organelles, and correlate its location using organelle morphology derived from structured illumination microscopy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据