4.8 Article

Ultrahigh strength and ductility in newly developed materials with coherent nanolamellar architectures

期刊

NATURE COMMUNICATIONS
卷 11, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-020-20109-z

关键词

-

资金

  1. Early Career Scheme from the Research Grants Council (RGC) of Hong Kong [25202719]
  2. National Natural Science Foundation of China [51801169]
  3. internal research fund from PolyU [P0009738, P0013994]
  4. Hong Kong RGC [11213319, 11202718]

向作者/读者索取更多资源

Nano-lamellar materials with ultrahigh strengths and unusual physical properties are of technological importance for structural applications. However, these materials generally suffer from low tensile ductility, which severely limits their practical utility. Here we show that markedly enhanced tensile ductility can be achieved in coherent nano-lamellar alloys, which exhibit an unprecedented combination of over 2GPa yield strength and 16% uniform tensile ductility. The ultrahigh strength originates mainly from the lamellar boundary strengthening, whereas the large ductility correlates to a progressive work-hardening mechanism regulated by the unique nano-lamellar architecture. The coherent lamellar boundaries facilitate the dislocation transmission, which eliminates the stress concentrations at the boundaries. Meanwhile, deformation-induced hierarchical stacking-fault networks and associated high-density Lomer-Cottrell locks enhance the work hardening response, leading to unusually large tensile ductilities. The coherent nano-lamellar strategy can potentially be applied to many other alloys and open new avenues for designing ultrastrong yet ductile materials for technological applications. Nano-lamellar materials with ultrahigh strengths are highly desirable for technological applications. Here the authors report a nanolamellar architecturing approach by utilizing coherent L12 structures to achieve ultrahigh strength and ductility in Ni-Fe-Co-Cr-Al-Ti multicomponent alloys.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据