4.8 Article

Nanohole-boosted electron transport between nanomaterials and bacteria as a concept for nano-bio interactions

期刊

NATURE COMMUNICATIONS
卷 12, 期 1, 页码 -

出版社

NATURE RESEARCH
DOI: 10.1038/s41467-020-20547-9

关键词

-

资金

  1. National Natural Science Foundation of China [21722703]
  2. Ministry of Education of China [T2017002]

向作者/读者索取更多资源

The study introduces the concept of nanohole-boosted electron transport (NBET) for antibiofilm, which effectively destroys key components of biofilms and downregulates genes related to biofilm formation. The high anti-infection capacity was verified in both in vitro and in vivo experiments.
Biofilms contribute to bacterial infection and drug resistance and are a serious threat to global human health. Antibacterial nanomaterials have attracted considerable attention, but the inhibition of biofilms remains a major challenge. Herein, we propose a nanohole-boosted electron transport (NBET) antibiofilm concept. Unlike known antibacterial mechanisms (e.g., reactive oxygen species production and cell membrane damage), nanoholes with atomic vacancies and biofilms serve as electronic donors and receptors, respectively, and thus boost the high electron transport capacity between nanomaterials and biofilms. Electron transport effectively destroys the critical components (proteins, intercellularly adhered polysaccharides and extracellular DNA) of biofilms, and the nanoholes also significantly downregulate the expression of genes related to biofilm formation. The anti-infection capacity is thoroughly verified both in vitro (human cells) and in vivo (rat ocular and mouse intestinal infection models), and the nanohole-enabled nanomaterials are found to be highly biocompatible. Importantly, compared with typical antibiotics, nanomaterials are nonresistant and thereby exhibit high potential for use in various applications. As a proof-of-principle demonstration, these findings hold promise for the use of NBET in treatments for pathogenic bacterial infection and antibiotic drug resistance. Nanomaterials have attracted attention as antibacterial agents and have several modes of action. Here, the authors report on 2D transition metal disulphide nanosheets with hole boosted electron donation/withdrawal for enhanced antibacterial and biofilm activity caused by electron damage.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据