4.6 Article

Testing a new active learning approach to advance motor learning knowledge and self-efficacy in physical therapy undergraduate education

期刊

BMC MEDICAL EDUCATION
卷 21, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s12909-021-02486-1

关键词

Motor learning; Active learning; Education; Physical therapy

资金

  1. Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior-Brasil (CAPES) [-001, CNPq 164596/2018-6]

向作者/读者索取更多资源

This study aimed to investigate the impact of a new educational intervention on physical therapy students' self-efficacy and knowledge in motor learning. Results showed a significant increase in students' self-efficacy after the intervention, which correlated with performance on objective knowledge tests. Content analysis revealed that students were able to apply motor learning theory to real-life projects tailored to personal objectives.
Background Motor learning (ML) science is foundational for physical therapy. However, multiple sources of evidence have indicated a science-practice gap. Clinicians report low self-efficacy with ML concepts and indicate that the lack of access to systematic training is a barrier for practical implementation. The general goal of this preliminary study was to describe the effects of a new educational intervention on physical therapy student's ML self-efficacy and knowledge. Methods Self-efficacy was assessed with the Physical Therapists' Perceptions of Motor Learning questionnaire. Data was acquired from third-semester students before their participation in the ML educational intervention. Reference self-efficacy data was also acquired from physical therapy professionals and first and last-semester students. The educational intervention for third-semester students was designed around an established framework to apply ML principles to rehabilitation. A direct experience, the Learning by Doing approach, in which students had to choose a motor skill to acquire over 10 weeks, provided the opportunity to apply ML theory to practice in a personally meaningful way. After the intervention self-efficacy was re-tested. ML knowledge was tested with an objective final exam. Content analysis of coursework material was used to determine how students comprehended ML theory and related it to their practical experience. The Kruskal-Wallis and Mann-Whitney U tests were used to compare self-efficacy scores between the four groups. Changes in self-efficacy after the educational intervention were analyzed with the Wilcoxon test. Spearman rank correlation analysis was used to test the association between self-efficacy and final exam grades. Results By the end of the intervention, students' self-efficacy had significantly increased (p < 0.03), was higher than that of senior students (p < 0.00) and experienced professionals (p < 0.00) and correlated with performance on an objective knowledge test (p < 0.03). Content analysis revealed that students learned to apply the elements of ML-based interventions present in the scientific literature to a real-life, structured ML program tailored to personal objectives. Conclusions Positive improvements were observed after the intervention. These results need confirmation with a controlled study. Because self-efficacy mediates the clinical application of knowledge and skills, systematic, active training in ML may help reduce the science-practice gap.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据