4.7 Article

Secreted KIAA1199 promotes the progression of rheumatoid arthritis by mediating hyaluronic acid degradation in an ANXA1-dependent manner

期刊

CELL DEATH & DISEASE
卷 12, 期 1, 页码 -

出版社

SPRINGERNATURE
DOI: 10.1038/s41419-021-03393-5

关键词

-

资金

  1. Natural Science Foundation of Zhejiang Province [LY16H060012]
  2. National Natural Science Foundation of China [81672129, 81971539]
  3. Key Research and Development Program of Zhejiang Province [2019C03023]
  4. Public Technology Applied Research Foundation of Zhejiang Province of China [LGF18H060009]
  5. Zhejiang College Students Innovative Entrepreneurial Training Program [2018R413028]

向作者/读者索取更多资源

The study identified the role of KIAA1199 in rheumatoid arthritis by impacting the degradation of hyaluronic acid, which affects the severity of arthritis. The mechanism of action is mainly mediated by attaching to the cell membrane of RA FLS and relies on its G8 domain binding to ANXA1.
In inflamed joints, enhanced hyaluronic acid (HA) degradation is closely related to the pathogenesis of rheumatoid arthritis (RA). KIAA1199 has been identified as a hyaladherin that mediates the intracellular degradation of HA, but its extracellular function remains unclear. In this study, we found that the serum and synovial levels of secreted KIAA1199 (sKIAA1199) and low-molecular-weight HA (LMW-HA, MW<100kDa) in RA patients were significantly increased, and the positive correlation between them was shown for the first time. Of note, treatment with anti-KIAA1199 mAb effectively alleviated the severity of arthritis and reduced serum LMW-HA levels and cytokine secretion in collagen-induced arthritis (CIA) mice. In vitro, sKIAA1199 was shown to mediate exogenous HA degradation by attaching to the cell membrane of RA fibroblast-like synoviosytes (RA FLS). Furthermore, the HA-degrading activity of sKIAA1199 depended largely on its adhesion to the membrane, which was achieved by its G8 domain binding to ANXA1. In vivo, kiaa1199-KO mice exhibited greater resistance to collagen-induced arthritis. Interestingly, this resistance could be partially reversed by intra-articular injection of vectors encoding full-length KIAA1199 instead of G8-deleted KIAA119 mutant, which further confirmed the indispensable role of G8 domain in KIAA1199 involvement in RA pathological processes. Mechanically, the activation of NF-kappa B by interleukin-6 (IL-6) through PI3K/Akt signaling is suggested to be the main pathway to induce KIAA1199 expression in RA FLS. In conclusion, our study supported the contribution of sKIAA1199 to RA pathogenesis, providing a new therapeutic target for RA by blocking sKIAA1199-mediated HA degradation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据