4.7 Article

Atypical Divergence of SARS-CoV-2 Orf8 from Orf7a within the Coronavirus Lineage Suggests Potential Stealthy Viral Strategies in Immune Evasion

期刊

MBIO
卷 12, 期 1, 页码 -

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/mBio.03014-20

关键词

SARS-CoV-2; coronavirus; Orf7a; X4-like; Orf8; protein superfamily; structure prediction; virus evolution

资金

  1. project Elixir-GR, implemented under the Action Reinforcement of the Research and Innovation Infrastructure, - Operational Program Competitiveness, Entrepreneurship, and Innovation (NSRF)
  2. European Union (European Regional Development Fund)
  3. Exascale Computing Project, a collaborative effort of the U.S. Department of Energy Office of Science [17-SC-20-SC]
  4. National Nuclear Security Administration

向作者/读者索取更多资源

Orf8 is one of the most puzzling genes in the SARS lineage of coronaviruses, showing distant sequence similarities with Orf7a and X4-like genes, with subtle conservation patterns in an immunoglobulin-like beta sandwich topology. Orf7a and Orf8 protein families exhibit different evolutionary trajectories within the coronavirus lineage, partly due to their interactions with the mammalian host cell. The high accuracy of the sequence space walk process and the idiosyncratic divergence patterns highlight the unique features of Orf8 in the evolution of the virus.
Orf8, one of the most puzzling genes in the SARS lineage of corona-viruses, marks a unique and striking difference in genome organization between SARS-CoV-2 and SARS-CoV-1. Here, using sequence comparisons, we unequivocally reveal the distant sequence similarities between SARS-CoV-2 Orf8 with its SARS-CoV-1 counterparts and the X4-like genes of coronaviruses, including its highly divergent paralog gene Orf7a, whose product is a potential immune antagonist of known structure. Supervised sequence space walks unravel identity levels that drop below 10% and yet exhibit subtle conservation patterns in this novel superfamily, characterized by an immunoglobulin-like beta sandwich topology. We document the high accuracy of the sequence space walk process in detail and characterize the subgroups of the superfamily in sequence space by systematic annotation of gene and taxon groups. While SARS-CoV-1 Orf7a and Orf8 genes are most similar to bat virus sequences, their SARS-CoV-2 counterparts are closer to pangolin virus homologs, reflecting the fine structure of conservation patterns within the SARS-CoV-2 genomes. The divergence between Orf7a and Orf8 is exceptionally idiosyncratic, since Orf7a is more constrained, whereas Orf8 is subject to rampant change, a peculiar feature that may be related to hitherto-unknown viral infection strategies. Despite their common origin, the Orf7a and Orf8 protein families exhibit different modes of evolutionary trajectories within the coronavirus lineage, which might be partly attributable to their complex interactions with the mammalian host cell, reflected by a multitude of functional associations of Orf8 in SARS-CoV-2 compared to a very small number of interactions discovered for Orf7a. IMPORTANCE Orf8 is one of the most puzzling genes in the SARS lineage of coronaviruses, including SARS-CoV-2. Using sophisticated sequence comparisons, we confirm its origins from Orf7a, another gene in the lineage that appears as more conserved, compared to Orf8. Orf7a is a potential immune antagonist of known structure, while a deletion of Orf8 was shown to decrease the severity of the infection in a cohort study. The subtle sequence similarities imply that Orf8 has the same immunoglobulin-like fold as Orf7a, confirmed by structure determination. We characterize the subgroups of this superfamily and demonstrate the highly idiosyncratic divergence patterns during the evolution of the virus.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据