4.5 Article

Applied organic-inorganic nanocomposite of PLA-TiO2 for preparing polysulfone membrane: structure, performance and UV-assisted cleaning strategy

期刊

WATER SCIENCE AND TECHNOLOGY
卷 83, 期 1, 页码 198-211

出版社

IWA PUBLISHING
DOI: 10.2166/wst.2020.564

关键词

antifouling performance; PLA-TiO2 nanocomposite; UF membrane; UV-assisted cleaning

资金

  1. National Natural Science Foundation for Young Scientists of China [51808388]
  2. State Key Program of National Natural Science Foundation of China [51638011]
  3. Natural Science Foundation of Tianjin, China [18JCQNJC76700]
  4. Young Elite Scientists Sponsorship Program by China Association for Science and Technology (CAST)

向作者/读者索取更多资源

The study developed an organic-inorganic nanocomposite (PLA-TiO2) for PSF membrane preparation, which exhibited enhanced stability and dispersibility within the PSF substance. UV-C process was found to reduce both reversible fouling and irreversible fouling, indicating the synergistic effect between photocatalysis and hydraulics in membrane fouling mitigation.
Blended organic copolymer (or homopolymer) and inorganic nanoparticles have been widely used (separately or simultaneously) for optimizing membrane pore structure and surface functionality. However, the prepared membranes suffer from degraded stability and insufficient integrity due to the high solubility or incompatibility of the blending additives. In this work, an organic-inorganic nanocomposite (i.e., PLA-TiO2) was designed, and employed for PSF membrane preparation. The Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analysis confirmed that bidentate chelating dominated the bonding mechanism between PLA and TiO2. The resultant PSF/PLA-TiO2 membranes possessed a highly porous surface with narrowed pore size distribution, demonstrating the strong pore forming ability of PLA-TiO2 for membrane preparations. Moreover, owing to the distinct inorganic-organic molecular conformation, the PLA-TiO2 exhibited enhanced stability and dispersibility within the PSF substance, which endowed the membrane with long-acting hydrophilicity and UV responsiveness. Given the UV responsiveness that is introduced by PLA-TiO2, UV-assisted strategies (UV-F and UV-C) were designed to further mitigate membrane fouling. The fouling analysis indicated that both reversible fouling and irreversible fouling were reduced in the UV-C process, signifying the synergistic effect between photocatalysis and hydraulics in membrane fouling mitigation. The enhanced membrane performance and the efficient preparation process highlight the potential of PLA-TiO2 in membrane modifications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据