4.7 Article

Uncertainty Analysis of Climate Change Impacts on Flood Frequency by Using Hybrid Machine Learning Methods

期刊

WATER RESOURCES MANAGEMENT
卷 35, 期 1, 页码 199-223

出版社

SPRINGER
DOI: 10.1007/s11269-020-02719-w

关键词

Machine learning; Whale optimization algorithm; Wavelet transform; Flood frequency; Climate change; Fuzzy uncertainty

向作者/读者索取更多资源

In this study, a new framework combining metaheuristic algorithms, decomposition, and machine learning was applied for flood frequency analysis under climate change conditions. Results showed that MARS outperformed M5 model tree, and the analysis revealed a decrease in 200-year discharge for most scenarios. Additionally, hydrological models were identified as a significant source of uncertainty in both near and far future periods.
In the present study, for the first time, a new framework is used by combining metaheuristic algorithms, decomposition and machine learning for flood frequency analysis under climate-change conditions and application of HadCM3 (A2 and B2 scenarios), CGCM3 (A2 and A1B scenarios) and CanESM2 (RCP2.6, RCP4.5 and RCP8.5 scenarios) in global climate models (GCM). In the proposed framework, Multivariate Adaptive Regression Splines (MARS) and M5 Model tree are used for classification of precipitation (wet and dry days), whale optimization algorithm (WOA) is considered for training least square support vector machine (LSSVM), wavelet transform (WT) is used for decomposition of precipitation and temperature, LSSVM-WOA, LSSVM, K nearest neighbor (KNN) and artificial neural network (ANN) are performed for downscaling precipitation and temperature, and discharge is simulated under present period (1972-2000), near future (2020-2040) and far future (2070-2100). Log normal distribution is used for flood frequency analysis. Furthermore, analysis of variance (ANOVA) and fuzzy method are employed for uncertainty analysis. Karun3 Basin, in southwest of Iran, is considered as a case study. Results indicated that MARS performed better than M5 model tree. In downscaling, ANN and LSSVM_WOA slightly outperformed other machine learning algorithms. Results of simulating the discharge showed superiority of LSSVM_WOA_WT algorithm (Nash-Sutcliffe efficiency (NSE) = 0.911). Results of flood frequency analysis revealed that 200-year discharge decreases for all scenarios, except CanESM2 RCP2.6 scenario, in the near future. In the near and far future periods, it is obvious from ANOVA uncertainty analysis that hydrological models are one of the most important sources of uncertainty. Based on the fuzzy uncertainty analysis, HadCM3 model has lower uncertainty in higher return periods (up to 60% lower than other models in 1000-year return period).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据