4.8 Article

Heterogeneous catalytic ozonation of atrazine with Mn-loaded and Fe-loaded biochar

期刊

WATER RESEARCH
卷 193, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2021.116860

关键词

-

资金

  1. National Science and Technology Major Projects for Water Pollution Control and Treatment [2017ZX07201003]
  2. National Natural Science Foundation of China (NSFC) [51808163, 51908126, 51961125104]
  3. State Key Laboratory of Urban Water Resource and Environment (Harbin Institute of Technology) [QA201925]

向作者/读者索取更多资源

Biochar loaded with manganese and iron showed excellent catalytic ozonation activity, effectively removing atrazine with hydroxyl radicals as the main oxidant. The enhanced adsorption and decomposition of O-3 on the loaded biochar led to improved degradation pathways of atrazine, reducing toxicity of oxidation products significantly. This research indicates the great potential of Mn-loaded and Fe-loaded biochar for heterogeneous catalytic ozonation in water pollution treatment.
After reaction with permanganate or ferrate, the resulted Mn-loaded and Fe-loaded biochar (MnOx/biochar and FeOx/biochar) exhibited excellent catalytic ozonation activity. O-3 (2.5 mg/L) eliminated 48% of atrazine (ATZ, 5 mu M) within 30 min at pH 7.0, while under identical conditions, ozonation efficiency of ATZ increased to 83% and 100% in MnOx/biochar and FeOx/biochar (20 mg/L) heterogeneous catalytic systems, respectively. Radical scavenger experiment and electron paramagnetic resonance (EPR) analysis confirmed that hydroxyl radical (center dot OH) was the dominant oxidant. Total Lewis acid sites on MnOx/biochar and FeOx/biochar were 3.5 and 4.1 times of that on the raw biochar, which induced enhanced adsorption of O-3 and its subsequent decomposition into center dot OH. Electron transfer via redox pairs on MnOx/biochar and FeOx/biochar was observed by cyclic voltammetry scans, which also functioned in the improved catalytic capacity. Degradation pathways of ATZ in MnOx/biochar and FeOx/biochar ozonation systems were proposed, with 34.6% and 44.8% of dechlorination effect accomplished within 30 min of reaction, which was improved by 4.1 and 5.3 times compared to pure ozonation. After 12-hour treatment, acute toxicity of ATZ oxidation products was reduced from 38.3% of pure ozonation system to 14.5% and 6.3% of activated ozonation systems with MnOx/biochar and FeOx/biochar, respectively. Mn-loaded biochar and Fe-loaded biochar have great potential for heterogeneous catalytic ozonation of polluted water. (C) 2021 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据