4.7 Article

Performance of structural concrete using Waste-to-Energy (WTE) combined ash

期刊

WASTE MANAGEMENT
卷 118, 期 -, 页码 180-189

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.wasman.2020.08.016

关键词

Waste-to-energy; WTE; Combined ash; Concrete; Mechanical properties; Leachability

资金

  1. Earth Engineering Center, Columbia University
  2. Global WtERT Council, USA

向作者/读者索取更多资源

In the U.S., about 27 million metric tons of municipal solid waste are used as fuel in Waste-to-Energy (WTE) power plants, generating about seven million tons of mixed bottom ash and fly ash (combined ash) annually, which are disposed of in landfills after metal separation. This study assessed the effect of using combined ash as a substitute of mined stone aggregates on the mechanical properties and leach-ability of cement mortar and concrete. The as-received combined ash was separated into three fractions: fine (<2 mm), medium (2-9.5 mm), and coarse (9.5-25 mm). The substitution of up to 100% of stone aggregate by the coarse and medium fractions of combined ash produced concrete with compressive strength exceeding 28 MPa after 28 days of curing. Similar results were obtained when the fine combined ash was used as a sand substitute, at 10 wt%, in mortar. The concrete specimens were subjected to several days of curing and mechanical testing. The results were comparable to the properties of commercial concrete products. The mechanical test results were supplemented by XRD and SEM analysis, and leachability tests by EPA Method 1313 showed that the optimal concrete products effectively immobilized the heavy metals in the combined ash. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据