4.7 Article

A novel way to validate UAS-based high-throughput phenotyping protocols using in silico experiments for plant breeding purposes

期刊

THEORETICAL AND APPLIED GENETICS
卷 134, 期 2, 页码 715-730

出版社

SPRINGER
DOI: 10.1007/s00122-020-03726-6

关键词

-

资金

  1. Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior-Brasil (CAPES) [001]
  2. Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)

向作者/读者索取更多资源

This study presents a new way to design and validate high-throughput phenotyping methods through computer simulations, demonstrating that the accuracy of plant height estimation is influenced by factors such as experimental repeatability, treatment variance, and the choice of percentile of points. Through testing of experimental setups, it was shown that the quality of reconstruction in 3D experiments affects inference-making and understanding of high-throughput phenotyping practices.
Key message It is possible to make inferences regarding the feasibility and applicability of plant high-throughput phenotyping via computer simulations. Protocol validation has been a key challenge to the establishment of high-throughput phenotyping (HTP) in breeding programs. We add to this matter by proposing an innovative way for designing and validating aerial imagery-based HTP approaches with in silico 3D experiments for plant breeding purposes. The algorithm is constructed following a pipeline composed of the simulation of phenotypic values, three-dimensional modeling of trials, and image rendering. Our tool is exemplified by testing a set of experimental setups that are of interest in the context of maize breeding using a comprehensive case study. We report on how the choice of (percentile of) points in dense clouds, the experimental repeatability (heritability), the treatment variance (genetic variability), and the flight altitude affect the accuracy of high-throughput plant height estimation based on conventional structure-from-motion (SfM) and multi-view stereo (MVS) pipelines. The evaluation of both the algorithm and the case study was driven by comparisons of the computer-simulated (ground truth) and the HTP-estimated values using correlations, regressions, and similarity indices. Our results showed that the 3D experiments can be adequately reconstructed, enabling inference-making. Moreover, it suggests that treatment variance, repeatability, and the choice of the percentile of points are highly influential over the accuracy of HTP. Conversely, flight altitude influenced the quality of reconstruction but not the accuracy of plant height estimation. Therefore, we believe that our tool can be of high value, enabling the promotion of new insights and further understanding of the events underlying the practice of high-throughput phenotyping.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据