4.7 Article

Hydrophilic graphene oxide-dopamine-cationic cellulose composites and their applications in N-Glycopeptides enrichment

期刊

TALANTA
卷 226, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.talanta.2021.122112

关键词

Hydrophilic composites; Cationic cellulose; Glycopeptides; Selective enrichment; Mass spectrometry

资金

  1. National Natural Science Foundation of China [21804041]
  2. Fundamental Research Funds for the Central Universities [50321102017022]

向作者/读者索取更多资源

The researchers synthesized a new hydrophilic composite by introducing cationic cellulose, which can efficiently enrich N-glycopeptides, thus improving the detection sensitivity of human serum immunoglobulin G (IgG).
Glycosylation is one of the most important post-translational modifications of proteins, and plays an important role in the structure and function of proteins. However, due to the diversity of glycopeptide forms and their low abundance, it is extraordinarily challenging to capture and separate glycopeptides with high selectivity from complex biological samples with mass spectrometric analysis. Here, we synthesized a new type of hydrophilic composite based on electrostatic interactions, which has been proven to be effective in immobilizing cationic cellulose on graphene oxide-dopamine carriers (expressed as GO-DA-JR), for highly specific enrichment of N-glycopeptides. The introduction of cationic cellulose provides not only a perfect surface charge for the composite but also a greater ability to enrich glycosylated peptides. Thirty-two glycopeptides from human serum immunoglobulin G (IgG) tryptic digests were observed with a greatly improved signal-to-noise ratio (S/N) and also presented high performance in anti-interfering enrichment of glycopeptides from complex samples containing 100-fold bovine serum albumin tryptic digests. In addition, GO-DA-JR has higher sensitivity (1 fmol/mu L IgG) and better enrichment capacity (up to 150 mg/g). Moreover, the results of glycopeptide enrichment and glycosylation analysis from human serum also show egood enrichment selectivity from real biological samples. This work exhibits high selectivity, high sensitivity, good stability and operability, indicating its potential for applications of glycopeptides enrichment in post-translational modification proteomics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据