4.7 Article

Comparing oxidation behaviors at 1773 K and 1973 K of HfB2-MoSi2/SiC-Si coating prepared by a combination method of pack cementation, slurry painting and in-situ synthesis

期刊

SURFACE & COATINGS TECHNOLOGY
卷 403, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.surfcoat.2020.126418

关键词

C/C composites; Coating; Oxidation behavior; In-situ synthesis; 1973 K

资金

  1. National Natural Science Foundation of China [51821091, 91860203, 51872239, 51727804, 51872237]
  2. Innovation Talent Promotion Plan of Shaanxi Province for Science and Technology Innovation Team [2020TD-003]
  3. China Postdoctoral Science Foundation [2019M660265]
  4. Fundamental Research Funds for the Central Universities [G2020KY05125]
  5. Creative Research Foundation of Science and Technology on Thermostructural Composite Materials Laboratory (NWPU), China [614291102010517]

向作者/读者索取更多资源

HfB2-MoSi2/SiC-Si coating was fabricated via pack cementation (PC) combined with slurry painting (SP) followed by heat treatment, where MoSi2 was in-situ synthesized from Mo and Si. The microstructure evolution and high-temperature oxidation resistance at 1773 K and 1973 K of the HfB2-MoSi2/SiC-Si coated specimens were comparatively studied. The protection mechanism of the coating was investigated, based on the structure and thermodynamic transformation of the oxide scale. The results revealed that the HfB2-MoSi2/SiC-Si coating possessed better oxidation resistance at 1973 K than that at 1773 K, mainly due to the changed properties of the multiphase Hf-Si-O oxide scale. At 1973 K, the formed Hf-Si-O oxide scale has low oxygen permeability, superior high-temperature stability and self-healing ability. While the Hf-Si-O oxide scale formed at 1773 K is loose, which caused oxygen penetrating into the inner layer and C/C substrate, finally resulting in a high mass loss. This study can provide valuable information and induce facile method to develop high-temperature environmental barrier coatings for C/C composites.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据